Answer:
11552.45 years
Explanation:
Given that:
Half life = 5730 years
Where, k is rate constant
So,
The rate constant, k = 0.00012 years⁻¹
Using integrated rate law for first order kinetics as:
Where,
is the concentration at time t
is the initial concentration
Given that:
The rate constant, k = 0.00012 years⁻¹
Initial concentration
= 160.0 counts/min
Final concentration
= 40.0 counts/min
Time = ?
Applying in the above equation, we get that:-

Answer:
D. It is the sharing of electrons between atoms with an electronegativity difference below 1.7
Covalent bonds share electrons, whereas ionic bonds exchange electrons. Covalent bonds have an electronegativity of 0.0-1.7 (0.0-0.3 is a nonpolar covalent bond and 0.3-1.7 is a polar covalent bond). Ionic bonds are bonds that go beyond the electronegativity of 1.7 to 4.0 (1.7-4.0).
(missing part of your question):
when we have K = 1 x 10^-2 and [A] = 2 M & [B] = 3M & m= 2 & i = 1
So when the rate = K[A]^m [B]^i
and when we have m + i = 3 so the order of this reaction is 3 So the unit of K is L^2.mol^-2S^-1
So by substitution:
∴ the rate = (1x 10 ^-2 L^-2.mol^-2S^-1)*(2 mol.L^-1)^2*(3mol.L^-1)
= 0.12 mol.L^-1.S^-1
To know this you pretty much do have to kind of memorize a few electronegativities. I don't recall ever getting a table of electronegativities on an exam.
From the structure, you have:
I remember the following electronegativities most because they are fairly patterned:
EN
H
=
2.1
EN
C
=
2.5
EN
N
=
3.0
EN
O
=
3.5
EN
F
=
4.0
EN
Cl
=
3.5
Notice how carbon through fluorine go in increments of
~
0.5
. I believe Pauling made it that way when he determined electronegativities in the '30s.
Δ
EN
C
−
Cl
=
1.0
Δ
EN
C
−
H
=
0.4
Δ
EN
C
−
C
=
0.0
Δ
EN
C
−
O
=
1.0
Δ
EN
O
−
H
=
1.4
So naturally, with the greatest electronegativity difference of
4.0
−
2.5
=
1.5
, the
C
−
F
bond is most polar, i.e. that bond's electron distribution is the most drawn towards the more electronegative compound as compared to the rest.
When the electron distribution is polarized and drawn towards a more electronegative atom, the less electronegative atom has to move inwards because its nucleus was previously favorably attracted to the electrons from the other atom.
That means generally, the greater the electronegativity difference between two atoms is, the shorter you can expect the bond to be, insofar as the electronegative atom is the same size as another comparable electronegative atom.
However, examining actual data, we would see that on average, in conditions without other bond polarizations occuring:
r
C
−
Cl
≈
177 pm
r
C
−
C
≈
154 pm
r
C
−
O
≈
143 pm
r
C
−
F
≈
135 pm
r
C
−
H
≈
109 pm
r
O
−
H
≈
96 pm
So it is not necessarily the least electronegativity difference that gives the longest bond.
Therefore, you cannot simply consider electronegativity. Examining the radii of the atoms, you should notice that chlorine is the biggest atom in the compound.
r
Cl
≈
79 pm
r
C
≈
70 pm
r
H
≈
53 pm
r
O
≈
60 pm
So assuming the answer is truly
C
−
C
, what would have to hold true is that:
The
C
−
F
bond polarization makes the carbon more electropositive (which is true).
The now more electropositive carbon wishes to attract bonding pairs from chlorine closer, thereby shortening the
C
−
Cl
bond, and potentially the
C
−
H
bond (which is probably true).
The shortening of the
C
−
Cl
bond is somehow enough to be shorter than the
C
−
C
bond (this is debatable).
Given equation:
P + O2 → P2O5
In order for the equation to be balanced, the stoichiometry of the atoms of one kind on the reactant side must be equal to that on the product
Reactants Products
P = 1 P = 2
O = 2 O = 5
The balanced equation would be:
4P + 5O2 → 2P2O5
Reactants Products
P = 4 P = 4
O = 10 O = 10
Ans: D)