Answer:
68,2%
Explanation:
Supposing the initial salt concentration of lake Parsons is the same of non-isolated lakes, 6,67L, and the change of salt concentration in isolated lake is just for water evaporation it is possible to write:
6,67gL⁻¹×X = 21gL⁻¹×Y
<em>-Where X is the initial water and Y is the water that remains in the isolated lake-</em>
Thus:
6,67X = 21Y
0,318 = Y/X
0,318 is the ratio of water that remains between total water. To obtain the ratio of evaporated water:
1-0,318 = 0,682
In percentage: <em>68,2%</em>
<em />
I hope it helps!
<em />
Mg reaction with O₂ gas will produce MgO so the equation will be
2Mg+O₂⇒2MgO. (You have to find the equation in order two figure out the number of moles of O₂ that will react with 1 mole of MgO).
The first step is to find the number of moles of Mg in 4.03g of Mg. You can do this by dividing 4.03g Mg by its molar mass (which is 24.3g/mol) to get 0.1658mol Mg. Then you have to find the number of moles of O₂ that will react with 0.1658mol Mg. To do this you need to use the fact that 1mol O₂ will react with 2mol Mg (this reatio is from the chemical equation) so you have to multiply 0.1658mol Mg by (1mol O₂)/(2mol Mg) to get 0.0829mol O₂. From here you would usually use PV=nRT and solve for V However, the question tells us that we are at STP, that means you can use the fact that 22.4L of gas is 1 mol of gas at STP. Using that information we can find the volume of O₂ gas by mulitlying 0.0829mol O₂ by 22.4L/mol to get 1.857L which equals 1857mL.
therefore, 1857mL of O₂ gas will react with 4.03g of Mg.
I hope this helps. Let me know in the comments if anything is unclear.
Table salt is an ionic compound :)
Rate and Thanks!
Answer:
Granite is an intrusive igneous rock which means it is cooled slowly deep upper the Earth's crust. It is composed of 25% to 35% quartz and over 50% potassium- and sodium rich feldspars.
Explanation: