Answer:
option B
Explanation:
given,
Satellite B has an orbital radius nine times that of satellite A.
R' = 9 R
now, orbital velocity of the satellite A
........(1)
now, orbital velocity of satellite B
from equation 1
hence, the correct answer is option B
Answer:
Approximately
(assuming that the acceleration due to gravity is
.)
Explanation:
Assuming that
the weight on this 72-kg skydiver would be
(points downwards.)
Air resistance is supposed to act in the opposite direction of the motion. Since this skydiver is moving downwards, the air resistance on the skydiver would point upwards.
Therefore, the net force on this skydiver should be the difference between the weight and the air resistance on the skydiver:
.
Apply Newton's Second Law of motion to find the acceleration of this skydiver:
.
Explanation:
The eardrum vibrates from the incoming sound waves and sends these vibrations to three tiny bones in the middle ear. These bones are called the malleus, incus, and stapes.
Answer:
570 N
Explanation:
Draw a free body diagram on the rider. There are three forces: tension force 15° below the horizontal, drag force 30° above the horizontal, and weight downwards.
The rider is moving at constant speed, so acceleration is 0.
Sum of the forces in the x direction:
∑F = ma
F cos 30° - T cos 15° = 0
F = T cos 15° / cos 30°
Sum of the forces in the y direction:
∑F = ma
F sin 30° - W - T sin 15° = 0
W = F sin 30° - T sin 15°
Substituting:
W = (T cos 15° / cos 30°) sin 30° - T sin 15°
W = T cos 15° tan 30° - T sin 15°
W = T (cos 15° tan 30° - sin 15°)
Given T = 1900 N:
W = 1900 (cos 15° tan 30° - sin 15°)
W = 570 N
The rider weighs 570 N (which is about the same as 130 lb).