Answer:
are you sure that you have the question right? because this is not do able unless fractions are allowed.
There exist a similar question where b = 68 instead of 6. First, determine the measure of the third angle, angle C,
m∠c = 180 - (55° + 44°) = 81°
Let x be the side AB, that which is opposite to angle C. Through the Sine Law,
68 / sin 44° = x / sin 81°
From the equation, the value of x is equal to 96.68. Thus, the answer is letter B.
![\bf ~~~~~~\textit{initial velocity} \\\\ \begin{array}{llll} ~~~~~~\textit{in feet} \\\\ h(t) = -16t^2+v_ot+h_o \end{array} \quad \begin{cases} v_o=\stackrel{}{\textit{initial velocity of the object}}\\\\ h_o=\stackrel{}{\textit{initial height of the object}}\\\\ h=\stackrel{}{\textit{height of the object at "t" seconds}} \end{cases} \\\\[-0.35em] ~\dotfill\\\\ h=-16t^2+\stackrel{\stackrel{v_o}{\downarrow }}{65}t](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~%5Ctextit%7Binitial%20velocity%7D%20%5C%5C%5C%5C%20%5Cbegin%7Barray%7D%7Bllll%7D%20~~~~~~%5Ctextit%7Bin%20feet%7D%20%5C%5C%5C%5C%20h%28t%29%20%3D%20-16t%5E2%2Bv_ot%2Bh_o%20%5Cend%7Barray%7D%20%5Cquad%20%5Cbegin%7Bcases%7D%20v_o%3D%5Cstackrel%7B%7D%7B%5Ctextit%7Binitial%20velocity%20of%20the%20object%7D%7D%5C%5C%5C%5C%20h_o%3D%5Cstackrel%7B%7D%7B%5Ctextit%7Binitial%20height%20of%20the%20object%7D%7D%5C%5C%5C%5C%20h%3D%5Cstackrel%7B%7D%7B%5Ctextit%7Bheight%20of%20the%20object%20at%20%22t%22%20seconds%7D%7D%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20h%3D-16t%5E2%2B%5Cstackrel%7B%5Cstackrel%7Bv_o%7D%7B%5Cdownarrow%20%7D%7D%7B65%7Dt)
now, take a look at the picture below, so for 2) and 3) is the vertex of this quadratic equation, 2) is the y-coordinate and 3) the x-coordinate.


Answer:
soln
A=(9,j)
x1=9,y1=j
B=(10,4)
x2=10,y2=4
slope=1
by using the fomulaof slope,
slope=y2-y1/x2-x1
1 =4-j/10-9
1 = 4-j/1
1=4-j
j=4-1
j=3
Answer:
A. simpson's paradox
Step-by-step explanation:
The Simpson's paradox was named after Edward Simpson, the person who described this paradox for the first time in 1951. In this paradox, you find two contrary patterns. For example, a positive and a negative correlation, depending on how data is analyzed. The differences in the analyses are how data are grouped. This paradox is observed often in social researches. Most of the times, results are affected by the sample on each group or additional information related to the data.