The centripetal acceleration is given by

where v is the tangential speed and r the radius of the circular orbit.
For the car in this problem,

and r=40 m, so we can re-arrange the previous equation to find the velocity of the car:
1. Answer: A skydiver whose air resistance is equal to that of her weight.
A skydiver free falls under gravity but her rate of fall slows down due to drag -air resistance. when this air resistance becomes equal to her weight, the two get balanced and the body does not accelerate or decelerates.
2. Answer: Gravity
Contact forces are those which act when there is physical contact between two bodies. For example: normal force, tension and spring force.
Non-contact forces act between two bodies even when they are at a distance apart. For example: gravity, electric force, magnetic force etc.
3. Answer: The tendency of an object's motion to remain the same.
Inertia is a property of matter by virtue of which it tends to remain in its state of motion or rest. It does depend on mass of the object, more the mass, more is inertia. For example, cycle can be easily moved but we need real push hard for a car to move.
4. Answer: 254 N
The man pushes the box with 310 N force at an angle of 55 degrees to the horizontal.
we can write this in terms of horizontal (
)and vertical component (
).
Horizontal component: 
Vertical component: 
The vertical component would act towards the floor making the job more difficult to move the job.
Answer:
A.
Explanation:
When the light travels through the lenses and disperses it can create other colors around objects that aren't there.
It's simple.
We know force is the rate of change in momentum.
So F=(mv-mu)/t or F=m(v-u)/t
=1200*(25-10)/5=3600N
The time taken by the stone to hit the ground would be 5.12 seconds.
<h3>What are the three equations of motion?</h3>
There are three equations of motion given by Newton
The first equation is given as follows
v = u + at
the second equation is given as follows
S = ut + 1/2×a×t²
the third equation is given as follows
v² - u² = 2×a×s
Keep in mind that these calculations only apply to uniform acceleration.
As given in the problem, a stone is dropped from the helicopter which is ascending at the speed of 19.6 m/s
height(S) = 156.8 meters
initial velocity(u) = -19.6 m/s
acceleration(a) = 9.81 m/s²
By using the second equation of motion given by newton
S = ut + 1/2at²
S = 156.8m ,u= -19.6 m/s , a= 9.81 m/s² and t =? seconds
156.8= -19.6t + 9.81t²
t = 5.12 seconds
Thus, the time taken by the stone to hit the ground would be 5.12 seconds.
Learn more about equations of motion from here,
brainly.com/question/5955789
#SPJ1