Answer:
d. Not enough information is given to answer this question.
Explanation:
From first law of thermodynamics
Q= W + ΔU
Q=Heat ,W= Work , ΔU=Change in internal energy
If work done by the gas :
It means that W and Q both are positive
Q- W = ΔU
Ii Q > W ,then temperature of the gas will increase.
If Q< W ,Then temperature of the gas will decreases.
If work done on the gas:
Q positive but W will be negative
Q- W = ΔU
Q= W or Q>W or Q< W ,then temperature of the gas will increase.
There are three cases because they did not give any information about the work.That is why option d is correct.
The answer is the letter "C" ( I have honors science I am good at this type of stuff )
Hope I helped :) ( ask me for help when u need it :)
Answer:
ummmmmmmmmmmm ask your teacher or perant for help
Explanation:
so umm ask an adult or teen figure and maybe you will get it write not sure do
Answer:
F = -6472.9 N
F= -6.47 kN
Explanation:
First of all you have to convert the data to SI units
so for the velocity you have :
Vi = 43km/h *(1000m/1km)*(1h/3600s) ---> using conversion factors
Vi= 11.9444 m/s
dX : distance the passanger moves
dX = 54cm*(1m/100cm) --> using conversion factors
dX = 0.54 m
Now to calculate the force we are going to use the sum of focers equals to mass for acceleration:
Sum F = m*a
We have to find a so we are going to use the velocity's formula as follows to solve a:
Vf ^2 = Vi^2 +2*a*dX
Vf=0 --> the passenger does not move after the airbag inflates.
a= -(Vi^2)/(2*dX)
you solve de acceleration with the data you hae and you will find
a = -132.1 m/ s^2
Now you can solve the Sum F equation
Sum F = 49 Kg * (-132.1 m/s^2)
F = -6472.9 N
F= -6.47 kN