To calculate the distance between two points on the coordinate system you have to use the following formula:
![d=\sqrt[]{(x_1-x_2)^2+(y_1-y_2)^2}](https://tex.z-dn.net/?f=d%3D%5Csqrt%5B%5D%7B%28x_1-x_2%29%5E2%2B%28y_1-y_2%29%5E2%7D)
Where
d represents the distance between both points.
(x₁,y₁) are the coordinates of one of the points.
(x₂,y₂) are the coordinates of the second point.
To determine the length of CD, the first step is to determine the coordinates of both endpoints from the graph
C(2,-1)
D(-1,-2)
Replace the coordinates on the formula using C(2,-1) as (x₁,y₁) and D(-1,-2) as (x₂,y₂)
![\begin{gathered} d_{CD}=\sqrt[]{(2-(-1))^2+((-1)-(-2))}^2 \\ d_{CD}=\sqrt[]{(2+1)^2+(-1+2)^2} \\ d_{CD}=\sqrt[]{3^2+1^2} \\ d_{CD}=\sqrt[]{9+1} \\ d_{CD}=\sqrt[]{10} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20d_%7BCD%7D%3D%5Csqrt%5B%5D%7B%282-%28-1%29%29%5E2%2B%28%28-1%29-%28-2%29%29%7D%5E2%20%5C%5C%20d_%7BCD%7D%3D%5Csqrt%5B%5D%7B%282%2B1%29%5E2%2B%28-1%2B2%29%5E2%7D%20%5C%5C%20d_%7BCD%7D%3D%5Csqrt%5B%5D%7B3%5E2%2B1%5E2%7D%20%5C%5C%20d_%7BCD%7D%3D%5Csqrt%5B%5D%7B9%2B1%7D%20%5C%5C%20d_%7BCD%7D%3D%5Csqrt%5B%5D%7B10%7D%20%5Cend%7Bgathered%7D)
The length of CD is √10 units ≈ 3.16 units
Your answer is 8.4 X 10^7.
Hope this helped!
flooring a value, simply means, dropping it to the closest integer, so for the floor function or ⌊x⌋, that means
⌊ 2.5 ⌋ = 2
⌊ 2.00000001 ⌋ = 2
⌊ 2.999999999999⌋ = 2
⌊ -2.0000000001⌋ = -3
⌊ -2.999999999999⌋ = -3
let's recall that on the negative side of the number line, the farther from 0, the smaller, so -1,000,000 is a tiny number compared to the much larger -1.
⌊ -5.2 ⌋ = -6.