Answer: 2.8275grams
Explanation: A buffer is made btw a weak acid and it salt. In a solution made by dissolving a weak acid in solution, equilibrium is set up btw ionised and unionised ion. For Benzoic acid
C6H5COOH....> C6H5COO- + H+
Ka = [C6H5COO-] [H+]/ [C6H5COOH].......(1)
using Ka = 6.5× 10^-5, [C6H5COOH] = 0.02M. PH= - log[H+] ....> [H+]= 10^-4M.
Putting the values in(1)
[C6H5COO-]= 6.5× 10^-5 × 0.02/ 10^-4
[C6H5COO-] = 0.013M = Molarity of sodium benzoate
Mole(C6H5COONa) = 0.013 × Volume = 0.013mol/litre × 1.5 litre
Mole(C6H5COONa) = 0.0195mol
Mass(C6H5COONa) = 0.0195 × Molar mass
Mass(C6H5COONa) = 2.8275g
Fluorine.
Because:- Atoms want to become stable, for an atom to become stable, they need 8 valence electrons. Since Fluorine has 7 valence electrons, it only needs one more electron to become stable and have an octet. An octet is when an atom/element has 8 valence electrons. Since Fluorine will need to gain an electron, it will have a negative charge, and become an anion.
The total energy required for this conversion is equivalent to the sum of the energies that are used. There are three steps:
1) Heating of liquid acetone
This used 628 J
2) Evaporation of acetone
This used 15.6 kJ or 15,600 J
3) Heating of acetone vapors
This used 712 J
Adding these quantities,
Total energy = 628 + 15,600 + 712
The total energy required was <span>16940 Joules of 16.94 kJ</span>
Answer:
Explanation:
At constant pressure and temperature, the mole ratio of the gases is equal to their volume ratio (a consequence of Avogadro's law).
Hence, the <em>complete combustion reaction</em> that has a ratio of 100 ml of gaseous hydrocarbon to 300 ml of oxygen, is that whose mole ratio is 1 mol hydrocarbon : 3 mol of oxygen.
Then, you must write the balanced chemical equations for the complete combustion of the four hydrocarbons in the list of choices, and conclude which has such mole ratio (1 mol hydrocarbon : 3 mol oxygen).
A complete combustion reaction of a hydrocarbon is the reaction with oxygen that produces CO₂ and H₂O, along with the release of heat and light.
<u>a. C₂H₄:</u>
- C₂H₄ (g) + 3O₂ (g) → 2CO₂(g) + 2H₂O (g)
Precisely, for this reaction the mole ratio is 1 mol C₂H₄: 2 mol O₂, hence, this is the right choice.
The following analysis just shows that the other options are not right.
<u>b. C₂H₂:</u>
- 2C₂H₂ (g) + 5O₂ (g) → 4CO₂(g) + 2H₂O (g)
The mole ratio for this reaction is 2 mol C₂H₂ :5 mol O₂.
<u>с. С₃Н₈</u>
- C₃H₈ (g) + 5O₂ (g) → 3CO₂(g) + 4H₂O (g)
The mole ratio is 1 mol C₃H₈ : 5 mol O₂
<u>d. C₂H₆</u>
- 2C₂H₆ (g) +7 O₂ (g) → 4CO₂(g) + 6H₂O (g)
The mole ratio is 2 mol C₂H₆ : 7 mol O₂