Jupiter's atmosphere is composed predominantly of hydrogen and helium, but if you have to select any one option then we can look at the percentage of existence of these elements that would be
<span>90 percent hydrogen.
remaining 10 percent is helium
so choose Hydrogen.</span>
I think the correct answer from the choices listed above is option C. Chemical reaction is the process <span>that changes one set of chemicals into another set of chemicals. In a chemical reaction, old bonds are broken down forming new bonds therefore new </span>substances<span> with new properties.</span>
<h3>
Answer:</h3>
Fe₂O₃(s) + 3CO(g) → 2Fe(s) + 3CO₂(g)
<h3>
Explanation:</h3>
Concept tested: Balancing of chemical equations
- A chemical equation is balanced by putting appropriate coefficients on the products and reactants of the equation.
- Balancing chemical equations ensures that chemical equations obey law of conservation of mass.
- In this case; to balance the above equation we put the coefficients, 1, 3, 2, and 3 on the reactants and products.
- Therefore; the balanced chemical equation for the reaction is;
Fe₂O₃(s) + 3CO(g) → 2Fe(s) + 3CO₂(g)
Matter needs to be in a plasma state for fusion to occur.
Answer:
The absorbance of the myoglobin solution across a 1 cm path is 0.84.
Explanation:
Beer-Lambert's law :
Formula used :
where,
A = absorbance of solution
c = concentration of solution
= Molar absorption coefficient
l = path length
= incident light
= transmitted light
Given :
l = 1 cm, c = 1 mg/mL ,
Molar mass of myoglobin = 17.8 kDa = 17.8 kg/mol=17800 g/mol
(1 Da = 1 g/mol)
c = 1 mg /mL =
1 mg = 0.001 g, 1 mL = 0.001 L
The absorbance of the myoglobin solution across a 1 cm path is 0.84.