Answer:
pH= 2- log3
Explanation:
H2SO4 + H2O -> HSO4^(-) + H30^(+)
0.03M ___ ___
___ 0.03M 0.03M
H30^(+) : C = 0.03M
pH= - log( [H3O^(+)] ) => pH= - log {3× 10^(-2)} => pH = 2 - log3
Answer:
1) -COOH
2) -NH2
3) hydrogen bonds
4) dispersion forces
5) -CH3
6) hydrogen bonds
7) negative
8) negative
9) positive
Explanation:
Alanine has a <u>-COOH</u> and a <u>-NH2</u> group available to form <u>hydrogen bonds</u> with water molecules.
Although there are some potential <u>dispersion forces</u> between the terminal <u>-CH3</u> group of alanine and hexane molecules, we expect the <u>hydrogen bonds</u> between alanine and water to be stronger.
Stronger intermolecular attractive forces between alanine and water lead to a more <u>negative ΔHmix</u> and more <u>negative (smaller positive)</u> ΔHsoln for water than for hexane.
Answer:
a) 24.31 g
b) 16.69 g
Explanation:
A mixture of CO2 and Kr weighs 41.0 g and exerts a pressure of 0.729 atm in its container.
After the CO2 is completely removed by absorption with NaOH(s), the pressure in the container is 0.193 atm.
Therefore, Pressure of Kr = 0.193 atm
Pressure of CO2 = 0.729 - 0.193 = 0.536 atm
Their mole fraction can be also determined as follows:
CO2 = 
CO2 = 
= 0.735
Also; for Kr ; we have
Kr =
Kr = 0.265
Molar mass of CO2 = 44 g/mol
Molar mass of Kr = 83.78 g/mol
Mass of CO2 = mole fraction * molar mass = 0.735 * 44 = 32.34
Mass of Kr = 0.265 * 83.78 = 22.20
Total mass = 32.34 +22.20 = 54.54
The Percentage of gas in mixture is as follows:
% CO2 =
* 100 %
= 0.5930
= 59.30%
(a) Mass of CO2 in mixture = 0.5930* 41 g = 24.31 g
% Kr =
* 100 %
= 0.407
= 40.70 %
(b) Mass of Kr in mixture = 0.407 * 41 = 16.69 g
Changes in pH may not only affect the shape of an enzyme but it may also change the shape or charge properties of the substrate so that either the substrate connot bind to the active site or it cannot undergo catalysis. In geneal enzyme have a pHoptimum. However the optimum is not the same for each enzyme