Answer:
The corresponding absolute pressure of the boiler is 24.696 pounds per square inch.
Explanation:
From Fluid Mechanics, we remember that absolute pressure (), measured in pounds per square inch, is the sum of the atmospheric pressure and the working pressure (gauge pressure). That is:
(1)
Where:
- Atmospheric pressure, measured in pounds per square inch.
- Working pressured of the boiler (gauge pressure), measured in pounds per square inch.
If we suppose that and , then the absolute pressure is:
The corresponding absolute pressure of the boiler is 24.696 pounds per square inch.
Solution :
Given :
Water have quality x = 0.7 (dryness fraction) at around pressure of 200 kPa
The phase diagram is provided below.
a). The phase is a standard mixture.
b). At pressure, p = 200 kPa, T =
Temperature = 120.21°C
c). Specific volume
d). Specific energy ()
e). Specific enthalpy
At
f). Enthalpy at m = 0.5 kg
= 1022.91 kJ
A 260 ft (79.25m) length of size 4 AWG uncoated copper wire operating at a temperature of 75°c has a resistance of 0.0792 ohm.
Explanation:
From the given data the area of size 4 AWG of the code is 21.2 mm², then K is the Resistivity of the material at 75°c is taken as ( 0.0214 ohm mm²/m ).
To find the resistance of 260 ft (79.25 m) of size 4 AWG,
R= K * L/ A
K = 0.0214 ohm mm²/m
L = 79.25 m
A = 21.2 mm²
R = 0.0214 *
= 0.0214 * 3.738
= 0.0792 ohm.
Thus the resistance of uncoated copper wire is 0.0792 ohm
The height at which the mass will be lifted is; 3 meters
<h3>How to utilize efficiency of a machine?</h3>
Formula for efficiency is;
η = useful output energy/input energy
We are given
η = 60% = 0.6
Input energy = 4 KJ = 4000 J
Thus;
0.6 = useful output energy/4000
useful output energy = 0.6 * 4000
useful output energy = 2400 J
Work done in lifting mass(useful output energy) = force * distance moved
Useful output energy = 800 * h
where h is height to lift mass
Thus;
800h = 2400
h = 2400/800
h = 3 meters
Read more about Machine Efficiency at; brainly.com/question/3617034
#SPJ1