Answer:
D. 0.160
Explanation:
The solution A is obtained adding 2.0mL of a solution of bromocresol green, 5.0mL of 1.60M HAc and 2.0mL of a solution of KCl. The solution is diluted to 50mL
That means the HAc is diluted from 5.0mL to 50.0mL, that is:
50.0mL / 5.0mL = 10 times.
And the final concentration of HAc must be:
1.60M / 10 times =
0.160M
Right answer is:
<h3>D. 0.160</h3>
<h3>
Answer:</h3>
4.227 × 10^-19 Joules
<h3>
Explanation:</h3>
Energy of a photon of light is calculated by the formula;
E = hf, where h is the plank's constant, 6.626 × 10^-34 J-s and f is the frequency.
But, f = c/λ
Where, c is the speed of light (2.998 × 10⁸ m/s), and λ is the wavelength.
Given the wavelength is 470 nm or 4.7 × 10^-7 m
Therefore;
E = hc/λ
= (6.626 × 10^-34 J-s × 2.998 × 10^8 m/s) ÷ 4.7 × 10^-7 m
= 4.227 × 10^-19 Joules
Therefore, the energy of a photon with 470 nm is 4.227 × 10^-19 Joules
Answer:
The third period contains eight elements: sodium, magnesium, aluminium, silicon, phosphorus, sulfur, chlorine, and argon. The first two, sodium and magnesium, are members of the s-block of the periodic table, while the others are members of the p-block.
Explanation:
C) energy level
Looking at quantum mechanics, we see that electrons exist at certain energy levels. When they get excited, they’ll jump from one energy state to a higher energy state and down. We can the. Look at the color it admits and determine what the energy level is.
Answer : The wavelength of yellow light produced by a sodium lamp is, 
Explanation : Given,
Frequency of radiation = 
conversion used : 
Formula used :

where,
= frequency of radiation
= wavelength of radiation
c = speed of light = 
Now put all the given values in the above formula, we get:


Therefore, the wavelength of yellow light produced by a sodium lamp is, 