See image below for the lewis structure of acrolein
Answer:
n₂ = 2.55 mol
Explanation:
Given data:
Initial number of moles = 0.758 mol
Initial volume = 80.6 L
Final volume = 270.9 L
Final number of moles = ?
Solution:
Formula:
V₁/n₁ = V₂/n₂
V₁ = Initial volume
n₁ = initial number of moles
V₂ = Final volume
n₂ = Final number of moles
now we will put the values in formula.
V₁/n₁ = V₂/n₂
80.6 L / 0.758 mol = 270.9 L/ n₂
n₂ = 270.9 L× 0.758 mol / 80.6 L
n₂ = 205.34 L.mol /80.6 L
n₂ = 2.55 mol
A heat because heat is the transfer of energy.
Answer:
Equation 2, because K being more reactive, exchanges position with Pb in PbNO3.
Explanation:
Answer:
108 kPa
Step-by-step explanation:
To solve this problem, we can use the <em>Combined Gas Laws</em>:
p₁V₁/T₁ = p₂V₂/T₂ Multiply each side by T₁
p₁V₁ = p₂V₂ × T₁/T₂ Divide each side by V₁
p₁ = p₂ × V₂/V₁ × T₁/T₂
Data:
p₁ = ?; V₁ = 34.3 L; T₁ = 31.5 °C
p₂ = 122.2 kPa; V₂ = 29.2 L; T₂ = 21.0 °C
Calculations:
(a) Convert temperatures to <em>kelvins
</em>
T₁ = (31.5 + 273.15) K = 304.65 K
T₂ = (21.0 + 273.15) K = 294.15 K
(b) Calculate the <em>pressure
</em>
p₁ = 122.2 kPa × (29.2/34.3) × (304.65/294.15)
= 122.2 kPa × 0.8542 × 1.0357
= 108 kPa