Explanation:
Aquifers are porous and permeable formations that stores ground water. The ground water system is made up of mostly fresh water.
- An aquifer acts as a reserve for ground water in the environment.
- By passing through different formations, water that recharges them are purified.
- This makes them fresh and mostly free from salt intrusion
An aquifer is able to store this fresh water and it is is good prospect for sourcing ground water.
The dichloromethane (DCM) has less density than water and also the polarity of water is much more than DCM. So the mixture of water and dichloromethane will always be a heterogeneous mixture. In the mixture dichloromethane will be always up of the water layer. The volume of the separatory funnel which contains the mixture of DCM and water must have to be more than the total volume of the liquids thus the volume of the funnel will be more than (50+50) = 100mL.
The caution have to consider during the separation are-
1. The separatory funnel have to shake well with lid and have to settle down for some times until the two liquid separated.
2. The lid should be open very slowly as the vapor pressure of DCM is more and it will float on the water.
3. After this the stopcock should be opened and slowly the water will come out first followed by DCM.
Answer:
17 g Ba(NO₂)₂
General Formulas and Concepts:
<u>Chemistry</u>
- Stoichiometry
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
Explanation:
<u>Step 1: Define</u>
4.5 × 10²² molecules Ba(NO₂)₂
<u>Step 2: Define conversion</u>
Molar Mass of Ba - 137.33 g/mol
Molar Mass of N - 14.01 g/mol
Molar Mass of O - 16.00 g/mol
Molar Mass of Ba(NO₂)₂ - 137.33 + 2(14.01) + 4(16.00) = 229.35 g/mol
<u>Step 3: Dimensional Analysis</u>
<u />
= 17.1384 g Ba(NO₂)₂
<u>Step 4: Check</u>
<em>We are given 2 sig figs. Follow sig fig rules.</em>
17.1384 g Ba(NO₂)₂ ≈ 17 g Ba(NO₂)₂
Correct compound is [Co(H2O)6]^+3
The oxidation state of Co is +3
[Co(H2O)6]^+3
Let
Co be x
H2O = 0
x + (0)6 = 3
x = 3
What is oxidation state?
The oxidation state, commonly known as the oxidation number, is the potential charge that an atom would have if all of its bonds to other atoms were fully ionic. It describes the degree of atom oxidation within a chemical compound.The oxidation state may be positive, negative, or zero in theory.
The oxidation number, sometimes referred to as the oxidation state, is the total number of electrons that an atom gains or loses while uniting with another atom to form a chemical bond.
To learn more about oxidation state click the given link
brainly.com/question/8990767
#SPJ4