It would cause a drop <span>but I am not sure double check other answers </span>
Answer:
Volume of acid, Va=250mL; Volume of quinine,Vb=20mL; Molarity of acid, Ma=0.05M.
Molar mass of acid= H2+S+O4= 2+32+(16X4)= 2+32+64=98g
Concentration of acid, Ca= Molar mass of acid/ Ma =98/0.05=1960g/mol
Explanation: To calculate concentration of quinine, Cb is as follow
Va*Ca=Vb*Cb
∴ Cb=Va*Ca/Vb =250*1960/20 =24500g/mol
Ooooh boy alright. So, this may or may not be a limited reactant problem so we need to first find out of it is.
First, how many moles of each substance are there
the molar mass of BCl3 is <span>117.17 grams so 37.5 g / 117.17 is ~ .32 mol.
The molar mass of H2O is 18.02 so 60 / 18.02 is ~ 3.33 mol.
Now, for every 1 mole of BCl3, there are 3 moles of HCl created. Therefore, BCl3 can create ~ .96 moles.
For every 3 moles of H2O, there are 3 moles of HCl created. Therefore, HCl can create ~3.33 moles.
But, there is not enough BCl3 to support that 3.33 moles, only enough for .96 moles, therefore BCl3 is the limiting reactant. Now, to answer the question, simply multiply .96 moles by the molar mass of HCl.
.96 x 36.46 = ~35 g</span>
Oil consists of many B. Covalent bonds between the nonmetals of Carbon, hydrogen and oxygen.