Ionic Equation:
H⁺(aq) + Cl⁻(aq) + Na⁺(aq) + CHO₂⁻(aq) → HCHO₂(aq) + Na⁺(aq) + Cl⁻(aq)
Net ionic equation:
H⁺(aq) + CHO₂⁻(aq) → HCHO₂(aq)
Answer:
Mass, temperature, and phase.
I think temperature because the higher the temperature of a given quantity of a substance, more is its thermal energy. Similarly, for the same temperature, higher mass of a substance will contain more thermal energy.
Relative dating can only determine the sequential order<span> of events, not the exact date which something occurred. It is useful for being able to determine a timeline of events in an exact point, but won't give a full picture of events in the past nor account for the age of material.
</span>
I believe the answer is D.
Scientists are biased, and want to prove their specific hypothesis is right.
Answer: Its average atomic mass is 114.9 amu
Explanation:
Mass of isotope 1 = 113 amu
% abundance of isotope 1 = 5% = 
Mass of isotope 2 = 115 amu
% abundance of isotope 2 = 95% = 
Formula used for average atomic mass of an element :

![A=\sum[(113\times 0.05)+(115\times 0.95)]](https://tex.z-dn.net/?f=A%3D%5Csum%5B%28113%5Ctimes%200.05%29%2B%28115%5Ctimes%200.95%29%5D)

Thus its average atomic mass is 114.9 amu