Answer:
energy is equal to 1000 J
Explanation:
When the jumper is in the tent, he has a given height, this height gives him a gravitational potential energy, which forms his initial mechanical energy of 1000 J. After jumping, this energy is converted into elastic energy of the rope plus a remainder of potential energy gravitational, it does not reach the ground, but as the friction is negligible the total mechanical energy is conserved, therefore its energy is equal to 1000 J
This is a case of energy transformation, but the total value of mechanical energy does not change
Explanation:
Q1) What is the speed of the tip of the minute hand of a clock where the hand is of length 7cm?
Ans1) speed, v=st=2πrT=2×227×7×10-260×60=119×10-4=1.22×10-4m/s
<h2>
<em><u>Hope it helps</u></em></h2>
One advantage is that whatever resource it is, it will never run out and you wont have to worry about not having it. A second is that there is going to be enough for everyone to use however much they want without there having to be a limit on how much you use.
Answer:
≈ 20.35 N [newton's of tension]
Explanation:
( (2.9 × 9.8) ÷ cos(35.6°) ) × sin (35.6°) =
( (28.42) ÷ (≈0.813) ) × (≈0.582) =
(≈34.96) × (≈0.582) = 20.3449446.... ≈ 20.35