Answer : The correct answer is the Bonds were broken on the reactants and new bonds were formed on the products.
Explanation :
In the chemical reaction, some substances react together are called reactant and the substance are formed are called product.
During the chemical reaction, the atoms of reactants rearranged to make products. There are on atoms are added or taken away in the reaction. This is known as the conservation of atoms.
For example : carbon atom react with the oxygen to form carbon dioxide.
From the given diagram, we conclude that the arrangement of molecules are different on both side of the mixture of reaction.
On the reactant side, the red molecules bonded with red molecule and the black molecule with white molecules. On the other hand i.e product side, the red molecule bonded with black molecule and white molecule bonded with red molecules. The molecular arrangement are different on both side of the reaction mixture.
Therefore, the correct answer is the Bonds were broken on the reactants and new bonds were formed on the products.
V ( NaOH ) = mL ?
M ( NaOH ) = 0.100 M
V ( HCl ) = 9.00 mL / 1000 => 0.009 L
M ( HCl ) = 0.0500 M
number of moles HCl:
n = M x V
n = 0.009 x 0.0500 => 0.00045 moles HCl
mole ratio:
<span>HCl + NaOH = NaCl + H2O
</span>
1 mole HCl ---------------- 1 mole NaOH
0.00045 moles HCl ----- ??
0.00045 x 1 / 1 => 0.00045 moles of NaOH
M = n / V
0.100 = 0.00045 / V
V = 0.00045 / 0.100
V = 0.0045 L
1 L ------------ 1000 mL
0.0045 L ----- ??
0.0045 x 1000 / 1 => 4.5 mL of NaOH
The given question is incomplete. The complete question is as follows.
Which of the following best helps explain why an increase in temperature increases the rate of a chemical reaction?
(a) at higher temperatures, high-energy collisions happen less frequently.
(b) at low temperatures, low-energy collisions happen more frequently.
(c) at higher temperatures, less-energy collisions happen less frequently.
(d) at higher temperatures, high-energy collisions happen more frequently
Explanation:
When we increase the temperature of a chemical reaction then molecules of the reactant species tend to gain kinetic energy. As a result, they come into motion which leads to more number of collisions within the molecules.
Therefore, chemical reaction will take less amount of time in order to reach its end point. This means that there will occur an increase in rate of reaction.
Thus, we can conclude that the statement at higher temperatures, high-energy collisions happen more frequently, best explains why an increase in temperature increases the rate of a chemical reaction.