Answer:
your didn't give any proper point ,but i assuming the the question as
the line pass through the point (1,0,-2)
so answer is
(x-1)/a = y/b = (z+2)/c,
where a,b,c are constant
Step-by-step explanation:
<span>So, they are looking for the percentage that is NOT explained...
Well, given the r we can find the percentage that IS explained by it first. That's given by r^2.
</span>Now - let's take the square of r it gives me .481636. That means that about 48% IS explained. Therefore, the part that cannot be explained
must be the missing part (out of 100% <span>so
100% - 48.1636% should be it :)
</span>
<span>So 100% - 48.1636% = 0.518364 and we want to round that off to three decimal places which will give us 0.518... and then we could convert that to a percent for the final. So 0.518 as a percentage is 51.8%! s</span>
Parameterize
by
![\vec s(u,v)=6\cos u\sin v\,\vec\imath+6\sin u\sin v\,\vec\jmath+6\cos v\,\vec k](https://tex.z-dn.net/?f=%5Cvec%20s%28u%2Cv%29%3D6%5Ccos%20u%5Csin%20v%5C%2C%5Cvec%5Cimath%2B6%5Csin%20u%5Csin%20v%5C%2C%5Cvec%5Cjmath%2B6%5Ccos%20v%5C%2C%5Cvec%20k)
with
and
. Take a normal vector to
,
![\dfrac{\partial\vec s}{\partial v}\times\dfrac{\partial\vec s}{\partial u}=36\cos u\sin^2v\,\vec\imath+36\sin u\sin^2v\,\vec\jmath+36\cos v\sin v\,\vec k](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cpartial%5Cvec%20s%7D%7B%5Cpartial%20v%7D%5Ctimes%5Cdfrac%7B%5Cpartial%5Cvec%20s%7D%7B%5Cpartial%20u%7D%3D36%5Ccos%20u%5Csin%5E2v%5C%2C%5Cvec%5Cimath%2B36%5Csin%20u%5Csin%5E2v%5C%2C%5Cvec%5Cjmath%2B36%5Ccos%20v%5Csin%20v%5C%2C%5Cvec%20k)
which has norm
![\left\|\dfrac{\partial\vec s}{\partial v}\times\dfrac{\partial\vec s}{\partial u}\right\|=36\sin v](https://tex.z-dn.net/?f=%5Cleft%5C%7C%5Cdfrac%7B%5Cpartial%5Cvec%20s%7D%7B%5Cpartial%20v%7D%5Ctimes%5Cdfrac%7B%5Cpartial%5Cvec%20s%7D%7B%5Cpartial%20u%7D%5Cright%5C%7C%3D36%5Csin%20v)
Then the integral of
over
is
![\displaystyle\iint_Sx^2+y^2\,\mathrm dS=\iint_S\left((6\cos u\sin v)^2+(6\sin u\sin v)^2\right)\left\|\frac{\partial\vec s}{\partial v}\times\frac{\partial\vec s}{\partial u}\right\|\,\mathrm du\,\mathrm dv](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Ciint_Sx%5E2%2By%5E2%5C%2C%5Cmathrm%20dS%3D%5Ciint_S%5Cleft%28%286%5Ccos%20u%5Csin%20v%29%5E2%2B%286%5Csin%20u%5Csin%20v%29%5E2%5Cright%29%5Cleft%5C%7C%5Cfrac%7B%5Cpartial%5Cvec%20s%7D%7B%5Cpartial%20v%7D%5Ctimes%5Cfrac%7B%5Cpartial%5Cvec%20s%7D%7B%5Cpartial%20u%7D%5Cright%5C%7C%5C%2C%5Cmathrm%20du%5C%2C%5Cmathrm%20dv)
![=\displaystyle36^2\int_0^{\pi/2}\int_0^{2\pi}\sin^3v\,\mathrm du\,\mathrm dv=\boxed{1728\pi}](https://tex.z-dn.net/?f=%3D%5Cdisplaystyle36%5E2%5Cint_0%5E%7B%5Cpi%2F2%7D%5Cint_0%5E%7B2%5Cpi%7D%5Csin%5E3v%5C%2C%5Cmathrm%20du%5C%2C%5Cmathrm%20dv%3D%5Cboxed%7B1728%5Cpi%7D)
Answer:
☆<《<em><u>HOPE</u></em><em><u> </u></em><em><u>IT</u></em><em><u> </u></em><em><u>WILL HELP YOU</u></em><em><u> </u></em><em><u>》</u></em><em><u>></u></em><em><u>☆</u></em>
Step-by-step explanation:
Exprassion is 16/45--x=0