Answer:
Therefore the equilibrium number of vacancies per unit cubic meter =2.34×10²⁴ vacancies/ mole
Explanation:
The equilibrium number of of vacancies is denoted by
.
It is depends on
- total no. of atomic number(N)
- energy required for vacancy
- Boltzmann's constant (k)= 8.62×10⁻⁵ev K⁻¹
- temperature (T).

To find equilibrium number of of vacancies we have find N.

Here ρ= 8.45 g/cm³ =8.45 ×10⁶m³
= Avogadro Number = 6.023×10²³
= 63.5 g/mole

g/mole
Here
=0.9 ev/atom , T= 1000k
Therefore the equilibrium number of vacancies per unit cubic meter,

=2.34×10²⁴ vacancies/ mole
Answer:
The coefficient before potassium (K) balances this chemical equation is 2.
Explanation:
_K +Cl₂ → 2KCl
K =1 ; Cl =2
K=1 × 2 = 2
Cl = 1 × 2 = 2
2 K +Cl₂ = 2 KCl
Answer:
go to the store to buy more batteries
Explanation:
Answer:
m = 700 g
Explanation:
Density:
Density is equal to the mass of substance divided by its volume.
Units:
SI unit of density is Kg/m3.
Other units are given below,
g/cm3, g/mL , kg/L
Formula:
D=m/v
D= density
m=mass
V=volume
Symbol:
The symbol used for density is called rho. It is represented by ρ. However letter D can also be used to represent the density.
Given data:
Density of octane = 0.700 g/cm³
Volume = 1 L
Mass = ?
Formula:
D=m/v
D= density
m=mass
V=volume
First of all we will convert the volume in cm³ because density is given in g/cm³ unit.
1 L = 1000 cm³
Now we will put the values in formula:
d= m/v
m = v × d
m = 1000 cm³ × 0.700 g/cm³
m = 700 g
Answer:
4.78 %.
Explanation:
<em>mass percent is the ratio of the mass of the solute to the mass of the solution multiplied by 100.</em>
<em></em>
<em>mass % = (mass of solute/mass of solution) x 100.</em>
<em></em>
mass of MgSO₄ = 50.0 g,
mass of water = d.V = (0.997 g/mL)(1000.0 mL) = 997.0 g.
mass of the solution = mass of water + mass of MgSO₄ = 997.0 g + 50.0 g = 1047.0 g.
<em>∴ mass % = (mass of solute/mass of solution) x 100</em> = (50.0 g/1047.0 g) x 100 = <em>4.776 % ≅ 4.78 %.</em>