Answer: C and D
Explanation: One of the first rule for total internal reflection to occur is that the ray must move from a dense to a less dense medium, hence refractive index of medium a must be greater than that of b.
When a ray moves from a dense to a less dense medium, the refracted ray moves away from the normal thus increasing the size of the angle of refraction (total internal refraction occurs when the angle of refraction is 90° and the angle of incidence at this point is known as the critical angle), hence the angle of incidence must be greater than the critical angle.
These points verifies option C and D
Answer:
8.57 Hz
Explanation:
From the question given above, the following data were obtained:
Wavelength (λ) = 3.5 m
Velocity (v) = 30 m/s
Frequency (f) =?
The velocity, wavelength and frequency of a wave are related according to the equation:
Velocity = wavelength × frequency
v = λ × f
With the above formula, we can simply obtain the frequency of the wave as follow:
Wavelength (λ) = 3.5 m
Velocity (v) = 30 m/s
Frequency (f) =?
v = λ × f
30 = 3.5 × f
Divide both side by 3.5
f = 30 / 3.5
f = 8.57 Hz
Thus, the frequency of the wave is 8.57 Hz
Answer: D(t)= 50(4/5)^t
Explanation: If 1/5 of the temperature difference is lost each minute, that means 4/5 of the difference remains each minute. So each minute, the temperature difference is multiplied by a factor of 4/5 (or 0.8).
If we start with the initial temperature difference, 50° Celsius, and keep multiplying by 4/5, this function gives us the temperature difference t minutes after the cake was put in the cooler.
Mercury and Venus are therefore closer to each other most of the time. But Earth is the planet closest to Venus. And that's why from here on Earth, Venus looks so big and luminous. Venus is the brightest thing in the night sky after the sun and the moon.
Explanation:
Fluids exert both drag and lift forces on moving objects. Drag is the frictional force opposing motion. Lift is the force perpendicular to motion.
Some objects, like parachutes, are designed with large cross sectional areas to increase drag force. Usually though, objects are designed to minimize drag force. It's why cars, planes, and boats have sleek shapes.
Airplane wings have shapes called airfoils that generate lift. It's what makes them fly. The same shape is found in racecar spoilers. These spoilers use lift force to push down on the rear tires, increasing traction.