According to Coulomb's Law , The size of the force varies inversely as the square of the distance between the two charges. So ,if the distance between the two charges is doubled, the electrostatic force will become weak by one fourth of the original force.
<h3><u>Answer;</u></h3>
= 20.436 seconds
<h3><u>Explanation;</u></h3>
Speed = Distance × time
Therefore;
Time = Distance/speed
Distance = 7.50 m, speed = 0.367 m/s
Time = 7.50/0.367
<u>= 20.436 seconds </u>
Answer:
39.2m/s
Explanation:
The potential energy the book has right before it falls is equal to the kinetic energy in falling.
PE = KE
mgh = (1/2)mv
2gh=v
v=(2)(9.81)(2)
v=39.24m/s
Answer:
The light used has a wavelenght of 4.51×10^-7 m.
Explanation:
let:
n be the order fringe
Ф be the angle that the light makes
d is the slit spacing of the grating
λ be the wavelength of the light
then, by Bragg's law:
n×λ = d×sin(Ф)
λ = d×sin(Ф)/n
λ = (3.2×10^-4 cm)×sin(25.0°)/3
= 4.51×10^-5 cm
≈ 4.51×10^-7 m
Therefore, the light used has a wavelenght of 4.51×10^-7 m.
The Moment of Inertia of the Disc is represented by . (Correct answer: A)
Let suppose that the Disk is a Rigid Body whose mass is uniformly distributed. The Moment of Inertia of the element is equal to the Moment of Inertia of the entire Disk minus the Moment of Inertia of the Hole, that is to say:
(1)
Where:
- - Moment of inertia of the Disk.
- - Moment of inertia of the Hole.
Then, this formula is expanded as follows:
(1b)
Dimensionally speaking, Mass is directly proportional to the square of the Radius, then we derive the following expression for the Mass removed by the Hole ():
And the resulting equation is:
The moment of inertia of the Disc is represented by . (Correct answer: A)
Please see this question related to Moments of Inertia: brainly.com/question/15246709