Either one is fun and great to play!
Answer:
236.3 x
C
Explanation:
Given:
B(0)=1.60T and B(t)=-1.60T
No. of turns 'N' =100
cross-sectional area 'A'= 1.2 x
m²
Resistance 'R'= 1.3Ω
According to Faraday's law, the induced emf is given by,
ℰ=-NdΦ/dt
The current given by resistance and induced emf as
I = ℰ/R
I= -NdΦ/dtR
By converting the current to differential form(the time derivative of charge), we get
= -NdΦ/dtR
dq= -N dΦ/R
The change in the flux dФ =Ф(t)-Ф(0)
therefore, dq =
(Ф(0)-Ф(t))
Also, flux is equal to the magnetic field multiplied with the area of the coil
dq = NA(B(0)-B(t))/R
dq= (100)(1.2 x
)(1.6+1.6)/1.3
dq= 236.3 x
C
Most often those smaller structures are triangular in shape because triangular shapes are very strong and stable
The potential difference,electric current ,resistance and new electric current will be 12 V,4 A,3 Ω,2 A.
<h3>What is resistance?</h3>
Resistance is a type of opposition force due to which the flow of current is reduced in the material or wire. Resistance is the enemy of the flow of current.
The energy in terms of the charge and potential difference is;
E= qV
60=5 C × V
V= 12 V
The electric current is found as;

From the ohm's law;
V=IR
12=4 ×R
R=3Ω
If the voltage is constant and the resistance is doubled, then the new electric current is half of the previous condition;

Hence, the potential difference,electric current ,resistance and new electric current will be 12 V,4 A,3 Ω,2 A.
To learn more about the resistance, refer to the link;
brainly.com/question/20708652
#SPJ1