It depends on "Potential Energy", the amount energy it could have, the amount depending on certain circumstances, like height or force. This was how traditional and some modern rollercoasters work. As the "conveyer belt" pulls you up, the higher you go, the more potential energy you have. Once you are falling down the hill, you are experiencing "Kinetic Energy". Hope it makes sence.
Answer:
1 Frequency
2 Wavelength
3 Amplitude
4 Crest
Hope it helps pls mark brainliest
Answer:
The load has a mass of 2636.8 kg
Explanation:
Step 1 : Data given
Mass of the truck = 7100 kg
Angle = 15°
velocity = 15m/s
Acceleration = 1.5 m/s²
Mass of truck = m1 kg
Mass of load = m2 kg
Thrust from engine = T
Step 2:
⇒ Before the load falls off, thrust (T) balances the component of total weight downhill:
T = (m1+m2)*g*sinθ
⇒ After the load falls off, thrust (T) remains the same but downhill component of weight becomes m1*gsinθ .
Resultant force on truck is F = T – m1*gsinθ
F causes the acceleration of the truck: F= m*a
This gives the equation:
T – m1*gsinθ = m1*a
T = m1(a + gsinθ)
Combining both equations gives:
(m1+m2)*g*sinθ = m1*(a + gsinθ)
m1*g*sinθ + m2*g*sinθ =m1*a + m1*g*sinθ
m2*g*sinθ = m1*a
Since m1+m2 = 7100kg, m1= 7100 – m2. This we can plug into the previous equation:
m2*g*sinθ = (7100 – m2)*a
m2*g*sinθ = 7100a – m2a
m2*gsinθ + m2*a = 7100a
m2* (gsinθ + a) = 7100a
m2 = 7100a/(gsinθ + a)
m2 = (7100 * 1.5) / (9.8sin(15°) + 1.5)
m2 = 2636.8 kg
The load has a mass of 2636.8 kg
So the given value or the formula in getting the electric potential region of space is V=350/sqrt of x^2+y^2. So the given data is x and y is equals to 2.6 and 2.8. So in my calculation i came up with an answer of 91.6