Answer:
4.96 × 10⁵ Pa
Explanation:
F = mg

This force is evenly distributed on the three leg
radius, r = d/2
= 2.8 / 2
= 1.4 cm = 0.014 m
total cross sectional area of the three legs, A = 3*pi*r^2

Pressure due to weight,
P = Weight/A

P = 4.96 × 10⁵ Pa
Answer:
Given:
m=1000kg
u= 16.7m/s
v=0m/s
F=8000N
Required:
s=?
Solution:
F=m × a
8000N=1000kg × a
a=8m/s^2
Since it decelerate a= -8m/s^2
v^2 = u^2 + 2as
s=v^2 - u^2 / 2a
s= 0 - (16.7m/s)^2 / 2 × -8m/s^2
s= -278.89/-16
s= 17.43m
The car travels approximately 17.43m before it stops
Please like and follow me
Answer:
2 seconds
Explanation:
The function of height is given in form of time. For maximum height, we need to use the concept of maxima and minima of differentiation.

Differentiate with respect to t on both the sides, we get

For maxima and minima, put the value of dh / dt is equal to zero. we get
- 32 t + 64 = 0
t = 2 second
Thus, the arrow reaches at maximum height after 2 seconds.
Answer:
a) x_{cm} = m₂/ (m₁ + m₂) d
, b) x_{cm} = 52.97 pm
Explanation:
The expression for the center of mass is
= 1 / M ∑
Where M is the total masses, mI and xi are the mass and position of each element of the system.
Let's fix our reference system on the oxygen atom and the molecule aligned on the x-axis, let's use index 1 for oxygen and index 2 for carbon
x_{cm} = 1 / (m₁ + m₂) (0+ m₂ x₂)
Let's reduce the magnitudes to the SI system
m₁ = 17 u = 17 1,661 10⁻²⁷ kg = 28,237 10⁻²⁷ kg
m₂ = 12 u = 12 1,661 10⁻²⁷ kg = 19,932 10⁻²⁷ kg
d = 128 pm = 128 10⁻¹² m
The equation for the center of mass is
x_{cm} = m₂/ (m₁ + m₂) d
b) let's calculate the value
x_{cm} = 19.932 10⁻²⁷ /(19.932+ 28.237) 10⁻²⁷ 128 10-12
x_{cm} = 52.97 10⁻¹² m
x_{cm} = 52.97 pm
Transfer of heat through objects touching source