Products are the species formed from chemical reactions. During a chemical reaction reactants are transformed into products after passing through a high energy transition state. This process results in the consumption of the reactants.
Given:
Density = 0.7360 g/L.
Pressure = 0.5073 atm.
Step 2
The mathematical expression of an ideal gas is,
Chemistry homework question answer, step 2, image 1
Step 3
Here, R is the universal gas constant (0.0821 L-atm/mol K), T is the temperature in Kelvin, and n is the number of
Answer: 13.9 g of
will be produced from the given mass of oxygen
Explanation:
To calculate the moles :

The balanced chemical reaction is:
According to stoichiometry :
7 moles of
produce = 6 moles of 
Thus 0.900 moles of
will produce =
of 
Mass of 
Thus 13.9 g of
will be produced from the given mass of oxygen
Answer:
What give me a few minutes I have to finish my test them I will answer in comments.
Answer:
0.0457 M
Explanation:
The reaction that takes place is:
- 2HBr + Ca(OH)₂ → CaBr₂ + 2H₂O
First we<u> calculate how many moles of acid reacted</u>, using the <em>HBr solution's concentration and volume</em>:
- Molarity = Moles / Volume
- Molarity * Volume = Moles
- 0.112 M * 12.4 mL = 1.389 mmol HBr
Now we <u>convert HBr moles to Ca(OH)₂ moles</u>, using the stoichiometric ratio:
- 1.389 mmol HBr *
= 0.6944 mmol Ca(OH)₂
Finally we <u>calculate the molarity of the Ca(OH)₂ solution</u>, using the <em>given volume and calculated moles</em>:
- 0.6944 mmol Ca(OH)₂ / 15.2 mL = 0.0457 M