<span>2<span>C6</span><span>H6</span>O(l)+17<span>O2</span>−−>12C<span>O2</span>(g)+12<span>H2</span>O(l)</span>
<span>2S<span>O2</span>(g)+<span>O2</span>(g)−−>2S<span>O3</span>(g)</span>
<span><span>N2</span>(g)+<span>O2</span>(g)−−>2NO(g)</span>
<span>2Na(s)+B<span>r2</span>(l)−−>2NaBr(s)</span><span>
On the 1st 3 I have
12 -17 = -5
2 - 3 = -1
2 - 2 = 0
For the last one:
</span><span>Delta n=0</span><span>
</span>
Answer:
Lose two electrons.
Explanation:
Barium is present in group 2.
It is alkaline earth metal.
Its atomic number is 56.
Its electronic configuration is Ba₅₆ = [Xe] 6s².
In order to attain the noble gas electronic configuration it must loses its two valance electrons.
When barium loses it two electron its electronic configuration will equal to the Xenon.
The atomic number of xenon is 54 so barium must loses two electrons to becomes equal to the xenon.
Answer:
Li is more reactive then Be.
Explanation:
As you go to the farther left and down on the periodic table, the higher that element reactivity is.
It is representing syncline rock formation
there are two rock formation based on fold formation : syncline and anticline
In syncline rock formation there is fold like trough unlike anticline where it is like crust
In syncline the fold is downward as shown in photo and the new rock is outer fold and old at inner side
1) Troposphere is the nearest layer to the earth.
2) Range from 5 to 11 miles in thickness.
3) Contains almost all of the atmospheric water vapor.