According to the formula you have given us to work with . . .
1). The airplane's acceleration is
(80 m/s north - zero) / (20 sec) = 4 m/sec^2 north
2). For the cyclist:
(V-final - zero) / 20sec = 0.5 m/s^2 south
Multiply each side by 20s : V-final = 0.5 m/s^2 south x (20sec) =
10 m/s south
<u>Answer</u>:
By tracking oxidation numbers we can identify the number electron in the atom
<u>Explanation</u>:
Tracking of electrons helps us to know when and how many electrons get transferred from one atom to other atom . Oxidation referred as the “loss of one or more electrons” by an atom. When the oxidation number of an element increases, there is a loss of electrons and that element is being oxidized. Oxidation numbers are usually written with the sign (+plus or −minus) followed by the magnitude, which is the opposite of charges on ions. In their elemental stage oxidation number of an atom is zero.
<u>Answer:</u> The given amount of iron reacts with 9.0 moles of
and produce 6.0 moles of 
<u>Explanation:</u>
We are given:
Moles of iron = 12.0 moles
The chemical equation for the rusting of iron follows:

By Stoichiometry of the reaction:
4 moles of iron reacts with 3 moles of oxygen gas
So, 12.0 moles of iron will react with =
of oxygen gas
- <u>For iron (III) oxide:</u>
By Stoichiometry of the reaction:
4 moles of iron produces 2 moles of iron (III) oxide
So, 12.0 moles of iron will produce =
of iron (III) oxide
Hence, the given amount of iron reacts with 9.0 moles of
and produce 6.0 moles of 
Answer:c
Explanation:
it’s gained kinetic from the gravitational potential energy at the top
1 is true,
<span>2 is definitely false </span>
<span>3 is also completely false because </span>
<span>4 is true. </span>
<span>So 1&4 </span>