First, we need to get moles of NaOH:
when moles NaOH = volume * molarity
= 0.02573L * 0.11 M
= 0.0028 moles
from the reaction equation:
H3PO4(aq) + 3NaOH → 3 H2O(l) + Na3PO4(aq)
we can see that when 1 mol H3PO4 reacts with→ 3 mol NaOH
∴ X mol H3PO4 reacts with → 0.0028 moles NaOH
∴ moles H3PO4 = 0.0028 mol / 3 = 9.4 x 10^-4 mol
now we can get the concentration of H3PO4:
∴[H3PO4] = moles H2PO4 / volume
= 9.4 x 10^-4 / 0.034 L
= 0.028 M
In lower temperatures, the molecules of real gases tend to slow down enough that the attractive forces between the individual molecules are no longer negligible. In high pressures, the molecules are forced closer together- as opposed to the further distances between molecules at lower pressures. This closer the distance between the gas molecules, the more likely that attractive forces will develop between the molecules. As such, the ideal gas behavior occurs best in high temperatures and low pressures. (Answer to your question: C) This is because the attraction between molecules are assumed to be negligible in ideal gases, no interactions and transfer of energy between the molecules occur, and as temperature decreases and pressure increases, the more the gas will act like an real gas.
It would 47.7 because you would have to both minus the number together.
Answer:
RbOH
Explanation:
For this question, we have to remember what is the definition of a base. A base is a compound that has the <u>ability to produce hydroxyl ions</u>
, so:

With this in mind we can write the <u>reaction for each substance:</u>




The only compound that fits with the definition is
, so this is our <u>base</u>.
I hope it helps!