Answer: 318 K
Explanation:
Combined gas law is the combination of Boyle's law, Charles's law and Gay-Lussac's law.
The combined gas equation is,
![\frac{P_1V_1}{T_1}=\frac{P_2V_2}{T_2}](https://tex.z-dn.net/?f=%5Cfrac%7BP_1V_1%7D%7BT_1%7D%3D%5Cfrac%7BP_2V_2%7D%7BT_2%7D)
where,
= initial pressure of gas = 231 kPa
= final pressure of gas = 168 kPa
= initial volume of gas = 3.25 L
= final volume of gas = 4.35 L
= initial temperature of gas = ![54^oC=273+54=327K](https://tex.z-dn.net/?f=54%5EoC%3D273%2B54%3D327K)
= final temperature of gas = ?
Now put all the given values in the above equation, we get:
![\frac{231\times 3.25}{327}=\frac{168\times 4.35}{T_2}](https://tex.z-dn.net/?f=%5Cfrac%7B231%5Ctimes%203.25%7D%7B327%7D%3D%5Cfrac%7B168%5Ctimes%204.35%7D%7BT_2%7D)
![T_2=318K](https://tex.z-dn.net/?f=T_2%3D318K)
At 318 K of temperature will the same gas take up 4.35 liters of space and have a pressure of 168 kPa
Answer:
![\boxed{\text{2408 min}}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Ctext%7B2408%20min%7D%7D)
Explanation:
The integrated rate law for radioactive decay is
![\ln\dfrac{N_{0}}{N_{t}} = kt](https://tex.z-dn.net/?f=%5Cln%5Cdfrac%7BN_%7B0%7D%7D%7BN_%7Bt%7D%7D%20%3D%20kt)
1. Calculate the decay constant
![\begin{array}{rcl}\ln \dfrac{100}{90} & = & k \times 366\\\\1.054 & = & 366k\\\\k & = & \dfrac{1.054 }{366}\\\\k & = & 2.879 \times 10^{-4} \text{ min}^{-1}\\\end{array}\\\\](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Brcl%7D%5Cln%20%5Cdfrac%7B100%7D%7B90%7D%20%26%20%3D%20%26%20k%20%5Ctimes%20366%5C%5C%5C%5C1.054%20%26%20%3D%20%26%20366k%5C%5C%5C%5Ck%20%26%20%3D%20%26%20%5Cdfrac%7B1.054%20%7D%7B366%7D%5C%5C%5C%5Ck%20%26%20%3D%20%26%202.879%20%5Ctimes%2010%5E%7B-4%7D%20%5Ctext%7B%20min%7D%5E%7B-1%7D%5C%5C%5Cend%7Barray%7D%5C%5C%5C%5C)
2. Calculate the half-life
![t_{\frac{1}{2}} = \dfrac{\ln2}{k}\\\\t_{\frac{1}{2}} = \dfrac{\ln2}{2.879 \times 10^{-4} \text{ min}^{-1}} = \text{2408 min}\\\\\text{The half-life for decay is } \boxed{\textbf{2408 min}}](https://tex.z-dn.net/?f=t_%7B%5Cfrac%7B1%7D%7B2%7D%7D%20%3D%20%5Cdfrac%7B%5Cln2%7D%7Bk%7D%5C%5C%5C%5Ct_%7B%5Cfrac%7B1%7D%7B2%7D%7D%20%3D%20%5Cdfrac%7B%5Cln2%7D%7B2.879%20%5Ctimes%2010%5E%7B-4%7D%20%5Ctext%7B%20min%7D%5E%7B-1%7D%7D%20%3D%20%5Ctext%7B2408%20min%7D%5C%5C%5C%5C%5Ctext%7BThe%20half-life%20for%20decay%20is%20%7D%20%5Cboxed%7B%5Ctextbf%7B2408%20min%7D%7D)
Answer:
39
Explanation:
Electrons weigh almost nothing, so their mass doesn't really matter for these types of problems. Just subtract 118-79 to find the remaining mass which is for the neutrons.
Short Answer: <span>Solutions of dilute, weak acids - the only kind that you might taste - are sour. Weak, dilute bases are bitter. Solutions of bases are slippery.
Hope I get brainliest!</span>