The thermal energy that is generated due to friction is 344J.
<h3>What is the thermal energy?</h3>
Now we know that the total mechanical energy in the system is constant. The loss in energy is given by the loss in energy.
Thus, the kinetic energy is given as;
KE = 0.5 * mv^2 =0.5 * 15.0-kg * (1.10 m/s)^2 = 9.1 J
PE = mgh = 15.0-kg * 9.8 m/s^2 * 2.40 m = 352.8 J
The thermal energy is; 352.8 J - 9.1 J = 344J
Learn more about thermal energy due to friction:brainly.com/question/7207509
#SPJ1
Answer:
The difference in the length of the bridge is 0.42 m.
Explanation:
Given that,
Length = 1000 m
Winter temperature = 0°C
Summer temperature = 40°C
Coefficient of thermal expansion 
We need to calculate the difference in the length of the bridge
Using formula of the difference in the length

Where,
= temperature difference
=Coefficient of thermal expansion
L= length
Put the value into the formula


Hence, The difference in the length of the bridge is 0.42 m.
A) reactants interact to form products with different chemical and physical properties
When a car is slowing down, it has a negative acceleration. Although it is not going a negative speed, it is decreasing in velocity, which is the definition of a negative acceleration.
Hope this helps!
Answer: wave
Explanation:
These are the basic definitions and characteristic of the terms given, which show tha the only rigth answer is the second option: wave.
1) Force is an interaction. There are four natural forces: electrostatic, gravity, strong nuclear force and weak nuclear force.
2) Wave: is a sequence of pulses or vibrations that cause the continuous transportation of energy (propagation). There is not transport of mass, only energy.
Some examples of waves are sound waves, electromagnetic waves (light, radio waves, micro waves, infrarred waves, ultraviolet waves).
3) Vacuum: is the absence of matter; empty space. Only electromagnetic waves can travel through vacuum; other waves need a medium to travel.
4) Medium: any matter is a medium: a solid, the air, a liquid, all of them are media through which waves can transport its energy, depending of the wavelength.