Answer:
The object will move to Xfinal = 7.5m
Explanation:
By relating the final velocity of the object and its acceleration, I can obtain the time required to reach this velocity point:
Vf= a × t ⇒ t= (7.2 m/s) / (4.2( m/s^2)) = 1,7143 s
With the equation of the total space traveled and the previously determined time I can obtain the end point of the object on the x-axis:
Xfinal= X0 + /1/2) × a × (t^2) = 3.9m + (1/2) × 4.2( m/s^2) × ((1,7143 s) ^2) =
= 3.9m + 3.6m = 7.5m
Answer:
The ball reaches Barney head in 
Explanation:
From the question we are told that
The rise velocity is 
The height considered is 
The horizontal velocity of the large object is 
Generally from kinematic equation

Here s is the distance of the object from Barney head ,
u is the velocity of the object along the vertical axis which is equal but opposite to the velocity of the helicopter
So

So

= 
Solving the above equation using quadratic formula
The value of t obtained is 
Answer:
The extension of the second wire is 
Explanation:
From the question we are told that
The length of the wire is 
The elongation of the wire is 
The tension is 
The length of the second wire is 
Generally the Young's modulus(Y) of this material is

Where 
Where A is the area which is evaluated as

and 
So

Since the wire are of the same material Young's modulus(Y) is constant
So we have


Now the ration between the first and the second wire is

Since tension , radius are constant
We have

substituting values




Here in nuclear reaction we can say that sum of neutrons and protons in reactant side and product side will be same always
Here mass number on the product side is given to us
so sum of mass number is given as

now on the reactant side also the number must be same

now we will have


Now number of protons on product side is given as

now we also know that atomic number of Fe is 26
so now we will have



now the equation is given as
