Answer:
<em>Hydrogen bond is the attractive force between the hydrogen attached electronegative atom </em>
Explanation:
Answer:
<em>Time period of pendulum is 2.02 s.</em>
Explanation:
A <em>simple pendulum</em> is a device which consists of mass m hanging from the string of length L attached to the some point.When displaced and released its swings back and forth with periodic motion.
The time period of pendulum is defined as time taken by the pendulum to complete one full oscillation . it is denoted by T.
By <em>Huygens law of period of pendulum</em>,
T = 2π
eqn 1
where L is the length of pendulum,
g is acceleration due to gravity
<em>Period of pendulum is independent of the mass of pendulum,</em>
<em />
Substituting values in eqn 1
T = 2π 
T = 2.02 s
<em>Time period of pendulum is 2.02 s.</em>
Answer:
4,800?
First I subtracted 8 from 24 because there are 24 hours in a day ad she spends 8 of those hours sleeping. I then took the answer which was 16, and multiplied that by 60 to find out how many minutes were in 16 hours and I got 960. I then multiplied 960 by 5 because she winks 5 times each minute. This left me with the answer 4,800.
Answer:
Explanation:
For this problem we must use Newton's second law where force is gravitational attraction
F = m a
Since movement is circular, acceleration is centripetal.
a = v2 / r
Let's replace
G m M / r² = m v² / r
G M r = v²
The distance r is from the center of the planet
r = R + h
v = √ GM / (R + h)
If the friction force is not negligible
F - fr = m a
Where the friction force must have some functional relationship, for example
Fr = b v + c v² +…
Suppose we are high enough for the linear term to derive the force of friction
G m M / r - (m b v + m c v2) = m v2
G M / r - b v = v²
We see that the solution of the problem gives lower speeds and that change over time.
To compensate for this friction force, the motors should be intermittently suspended to recover speed.