Answer:
40x² + 65x + 25
Explanation:
We will just multiply each term from the first bracket by each term from the second and then combine like terms to get the final expression.
This would be done as follows:
(5x + 5)(8x + 5)
5x(8x) + 5x(5) + 5(8x) + 5(5)
40x² + 25x + 40x + 25
40x² + 65x + 25
Hope this helps :)
Answer:
The answer to your question is r = 4 in
Step-by-step explanation:
Data
Volume = 4000 π in³
height = 250 in
radius = ?
Process
1.- Look the formula to calculate the volume of a cylinder
Volume = πr²h
2.- Solve for r²
r² = Volume / πh
3.- Substitution
r² = 4000π / π(250)
4.- Simplification
r² = 16
r = √16
5.- Result
r = 4 in
Answer:
The system of inequalities is
y\geq 3x-2
y<-(1/5)x+2
Step-by-step explanation:
step 1
Find the equation of the solid blue line
Let
A(0,-2), B(1,1)
Find the slope of AB
m=(1+2)/(1-0)=3
The equation of the line into slope intercept form is equal to
y=mx+b
we have
m=3
b=-2 - ----> the point A is the y-intercept
substitute
y=3x-2 - -----> equation of the solid blue line
The solution of the inequality is the shaded area above the solid line
therefore
The first inequality is
y\geq 3x-2
C(0,2), D(5,1)
step 2
Find the equation of the dashed red line
Let
Find the slope of CD
m=(1-2)/(5-0)=-1/5
The equation of the line into slope intercept form is equal to
y=mx+b
we have
m=-1/5
b=2 ----> the point C is the y-intercept
substitute
y=-(1/5)x+2 -----> equation of the dashed red line
The solution of the inequality is the shaded area below the dashed line
therefore
The second inequality is
y<-(1/5)x+2
The system of inequalities is
y\geq 3x-2
y<-(1/5)x+2
Answer:
6x^2 -10
Step-by-step explanation:
(5x²+2) - (-4x²+7)+(-3x²-5)
Distribute the minus sign
(5x²+2) +4x²-7 +(-3x²-5)
Combine like terms
5x²+4x²-3x² +2-7-5
6x^2 -10