Refer to the diagram shown below.
i = the current in the circuit., A
R₁ = the internal resistance of the battery, Ω
R₂ = the resistance of the 60 W load, Ω
Because the resistance across the battery is 8.5 V instead of 9.0 V, therefore
(R₁ )(i A) = 9 - 8.5 = (0.5 V)
R₁*i = 0.5 (10
Also,
R₂*i = 9.5 (2)
Because the power dissipated by R₂ is 60 W, therefore
i²R₂ = 60
From (2), obtain
i*9.5 = 60
i = 6.3158 A
From (1), obtain
6.3158*R₁ = 0.5
R₁ = 0.5/6.3158 = 0.0792 Ω = 0.08 Ω (nearest hundredth)
Answer: 0.08 Ω
The equilibrium temperature of aluminium and water is 33.2°C
We know that specific heat of aluminium is 0.9 J/gm-K, and that of water is 1 J/gm-K
Now we can calculate the equilibrium temperature
(mc∆T)_aluminium=(mc∆T)_water
15.7*0.9*(53.2-T)=32.5*1*(T-24.5)
T=33.2°C
Answer:
Explanation:
we know that half life of an element is
T=0.693/λ
where λ is decay constant in order to find decay constant
λ=0.693/T
λ=0.693/8.04
λ=0.086
Answer:
734.215N
Explanation:
First we calculate the angle that corresponds to a 5% slope using the Tan-1 function

then we use the component that corresponds to the direction parallel to the road, additionally we must multiply by the gravity value to find the weight(g=9.81m/s^2)
Wx=M*g*sen(2.86)=1500kg*9.81*sen(2.86)=734.215N
Answer:
λ = 5.85 x 10⁻⁷ m = 585 nm
f = 5.13 x 10¹⁴ Hz
Explanation:
We will use Young's Double Slit Experiment's Formula here:

where,
λ = wavelength = ?
Y = Fringe Spacing = 6.5 cm = 0.065 m
d = slit separation = 0.048 mm = 4.8 x 10⁻⁵ m
L = screen distance = 5 m
Therefore,

<u>λ = 5.85 x 10⁻⁷ m = 585 nm</u>
Now, the frequency can be given as:

where,
f = frequency = ?
c = speed of light = 3 x 10⁸ m/s
Therefore,

<u>f = 5.13 x 10¹⁴ Hz</u>