Answer:
Magnets exert forces and torques on each other due to the rules of electromagnetism. The forces of attraction field of magnets are due to microscopic currents of electrically charged electrons orbiting nuclei and the intrinsic magnetism of fundamental particles (such as electrons) that make up the material. Hope this helps you! :)
Given that the function of the wave is f(x) = cos(π•t/2), we have;
a. The graph of the function is attached
b. 4 units of time
c. Even
d. 4.935 J/kg
e. 1.234 W/kg
<h3>How can the factors of the wave be found?</h3>
a. Please find attached the graph of the signal created with GeoGebra
b. The period of the signal, T = 2•π/(π/2) = <u>4</u>
c. The signal is <u>even</u>, given that it is symmetrical about the y-axis
d. The energy of the signal is given by the formula;

Which gives;
E = 0.5 × 1.571² × 1² × 4 = <u>4.935 J/kg</u>
e. The power of the wave is given by the formula;
E = 0.5 × 1.571² × 1² × 4 × 0.25 = <u>1.234 W/</u><u>kg</u>
Learn more about waves here:
brainly.com/question/14015797
That's what stars do all the time.
For example, in the sun (and MOST other stars), deep down in the center
of the sun's core, two atoms of Hydrogen get squashed together so hard
that they blend into one atom of Helium AND release some energy.
That's where the sun's energy all comes from. It's called "nuclear fusion".
It needs tremendous temperature and pressure to happen. We know how
to do it, but we can't control it. So far, the only thing we've ever been able
to use it for is Hydrogen bombs.
There are 92 elements on the Periodic Table that are found in nature,
plus another 20 or so that have been made in the laboratory, but only
a few atoms of them.
Answer:
The solved problem is in the photo. Hope it helps.