1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Norma-Jean [14]
3 years ago
5

There are 22 people in the classroom 12 are we

Engineering
2 answers:
Leni [432]3 years ago
6 0
22 because all should wear safety glasses to be protected
algol [13]3 years ago
4 0
D 22 because everyone is required to wear safety glasses
You might be interested in
A water reservoir contains 108 metric tons of water at an average elevation of 84 m. The maximum amount of electric energy that
zavuch27 [327]

Answer:

24.72 kwh

Explanation:

Electric energy=potential energy=mgz where m is mass, g is acceleration due to gravity and z is the elevation.

Substituting the given values while taking g as 9.81 and dividing by 3600 to convert to per hour we obtain

PE=(108*9.81*84)/3600=24.72 kWh

8 0
4 years ago
The hot and cold inlet temperatures to a concentric tube heat exchanger are Th,i = 200°C, Tc,i = 100°C, respectively. The outlet
alexgriva [62]

Answer:Counter,

0.799,

1.921

Explanation:

Given data

T_{h_i}=200^{\circ}C

T_{h_o}=120^{\circ}C

T_{c_i}=100^{\circ}C

T_{c_o}=125^{\circ}C

Since outlet temperature of cold liquid is greater than hot fluid outlet temperature therefore it is counter flow heat exchanger

Equating Heat exchange

m_hc_{ph}\left [ T_{h_i}-T_{h_o}\right ]=m_cc_{pc}\left [ T_{c_o}-T_{c_i}\right ]

\frac{m_hc_{ph}}{m_cc_{pc}}=\frac{125-100}{200-120}=\frac{25}{80}=C\left ( capacity rate ratio\right )

we can see that heat capacity of hot fluid is minimum

Also from energy balance

Q=UA\Delta T_m=\left ( mc_p\right )_{h}\left ( T_{h_i}-T_{h_o}\right )

NTU=\frac{UA}{\left ( mc_p\right )_{h}}=\frac{\left ( T_{h_i}-T_{h_o}\right )}{T_m}

T_m=\frac{\left ( 200-125\right )-\left ( 120-100\right )}{\ln \frac{75}{20}}

T_m=41.63^{\circ}C

NTU=1.921

And\ effectiveness \epsilon =\frac{1-exp\left ( -NTU\left ( 1-c\right )\right )}{1-c\left ( -NTU\left ( 1-c\right )\right )}

\epsilon =\frac{1-exp\left ( -1.921\left ( 1-0.3125\right )\right )}{1-0.3125exp\left ( -1.921\left ( 1-0.3125\right )\right )}

\epsilon =\frac{1-exp\left ( -1.32068\right )}{1-0.3125exp\left ( -1.32068\right )}

\epsilon =\frac{1-0.2669}{1-0.0834}

\epsilon =0.799

5 0
4 years ago
According to the
zysi [14]

Answer:

The part of the system that is considered the resistance force is;

B

Explanation:

The simple machine is a system of pulley  that has two pulleys

The effort, which is the input force at A gives the value of the tension at C and  D which are used to lift the load B

Therefore, we have;

A = C = D

B = C + D = C + C = 2·C

∴ C = B/2

We have;

C = B/2 = A

Therefore, with the pulley only a force, A equivalent to half the weight, B, of the load is required to lift the load, B

The resistance force is the constant force in the system that that requires an input force to overcome in order for work to be done

It is the force acting to oppose the sum of the other forces system, such as a force acting in opposition to an input force

Therefore, the resistance force is the load force, B, for which the input force, A, is required in order for the load to be lifted.

3 0
3 years ago
At steady state, a reversible refrigeration cycle discharges energy at the rate QH to a hot reservoir at temperature TH, while r
ludmilkaskok [199]

Answer:

a) COP_{R} = 25.014, b) T_{H} = 327.78\,K\,(54.63\,^{\textdegree}C)

Explanation:

a) The coefficient of performance of a reversible refrigeration cycle is:

COP_{R} = \frac{T_{L}}{T_{H}-T_{L}}

Temperatures must be written on absolute scales (Kelvin for SI units, Rankine for Imperial units)

COP_{R} = \frac{275.15\,K}{286.15\,K-275.15\,K}

COP_{R} = 25.014

b) The respective coefficient of performance is determined:

COP_{R} = \frac{Q_{L}}{Q_{H}-Q_{L}}

COP_{R} = \frac{8.75\,kW}{10.5\,kW-8.75\,kW}

COP_{R} = 5

But:

COP_{R} = \frac{T_{L}}{T_{H}-T_{L}}

The temperature at hot reservoir is found with some algebraic help:

COP_{R} \cdot (T_{H}-T_{L})=T_{L}

T_{H}-T_{L} = \frac{T_{L}}{COP_{R}}

T_{H} = T_{L}\cdot \left(1+\frac{1}{COP_{R}}  \right)

T_{H} = 273.15\,K \cdot \left(1+\frac{1}{5}  \right)

T_{H} = 327.78\,K\,(54.63\,^{\textdegree}C)

8 0
3 years ago
Read 2 more answers
What is a Wayfaring graphic?
KonstantinChe [14]

Answer:

ambages. pitiless or without compassion; cruel; merciless. winding, roundabout paths or ways.

Explanation:

6 0
3 years ago
Other questions:
  • As an employee, who's is supposed to provide training on the chemicals you are handling or come in contact with at work?
    14·2 answers
  • A Geostationary satellite has an 8kW RF transmission pointed at the earth. How much force does that induce on the spacecraft? (N
    15·1 answer
  • Which of the following drivers has the right-of-way?
    9·1 answer
  • Water is flowing in a metal pipe. The pipe OD (outside diameter) is 61 cm. The pipe length is 120 m. The pipe wall thickness is
    9·1 answer
  • Who's your favorite singer and WHT your favorite song​
    11·2 answers
  • What are the two reasons for a clear cut
    10·1 answer
  • Discuss the organizational system that you believe would be the most effective for the safety officer in a medium-sized (100-200
    7·1 answer
  • What can be used to relieve stress in a weld.
    12·2 answers
  • What is code in Arduino to turn led on and off
    10·1 answer
  • What should you use to keep battery terminals from corroding
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!