1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MAVERICK [17]
2 years ago
14

Consider the function f(n) = n

Engineering
1 answer:
alexira [117]2 years ago
4 0

get off this

Explanation:

You might be interested in
‏What is the potential energy in joules of a 12 kg ( mass ) at 25 m above a datum plane ?
Virty [35]

Answer:

E = 2940 J

Explanation:

It is given that,

Mass, m = 12 kg

Position at which the object is placed, h = 25 m

We need to find the potential energy of the mass. It is given by the formula as follows :

E = mgh

g is acceleration due to gravity

E=12\times 9.8\times 25\\\\E=2940\ J

So, the potential energy of the mass is 2940 J.

3 0
3 years ago
A sample of sand weighs 490 g in stock and 475 in Oven Dry (OD) condition, respectively. If absorption capability of the sand is
Ivahew [28]

The weight of the specimen in SSD condition is 373.3 cc

<u>Explanation</u>:

a) Apparent specific gravity = \frac{A}{A-C}

Where,

A = mass of oven dried test sample in air = 1034 g

B = saturated surface test sample in air = 1048.9 g

C = apparent mass of saturated test sample in water = 975.6 g

apparent specific gravity = \frac{A}{A-C}

                                         = \frac{1034}{1034-675 \cdot 6}

Apparent specific gravity = 2.88

b) Bulk specific gravity G_{B}^{O D}=\frac{A}{B-C}

G_{B}^{O D}=\frac{1034}{1048.9-675 \cdot 6}

       =  2.76

c) Bulk specific gravity (SSD):

G_{B}^{S S D}=\frac{B}{B-C}

=\frac{1048 \cdot 9}{1048 \cdot 9-675 \cdot 6}

G_{B}^{S S D} = 2.80

d) Absorption% :

=\frac{B-A}{A} \times 100 \%

=\frac{1048 \cdot 9-1034}{1034} \times 100

Absorption = 1.44 %

e) Bulk Volume :

v_{b}=\frac{\text { weight of dispaced water }}{P \omega t}

=\frac{1048 \cdot 9-675 \cdot 6}{1}

= 373.3 cc

5 0
3 years ago
How are speed and acceleration related
erica [24]
R = distance

dr/dt speed or with a direction, velocity

d(dr/dt)/dt = the time derivative of the velocity is called acceleration.

Speed is a scalar. Acceleration is a vector.
6 0
3 years ago
Read 2 more answers
A reversible process and an irreversible process both have the same________ between the same two states. a. Internal energy b. W
Vlad1618 [11]

Answer:

a) Internal energy

Explanation:

As we know that internal energy is a point function so it did not depends on the path ,it depends  at the initial and final states of process.All point function property did not depends on the path.Internal energy is a exact function.

Work and heat is a path function so these depend on the path.They have different values for different path between two states.Work and heat are in exact function.

We know that in ir-reversible process entropy will increase so entropy will be different for reversible and ir-reversible processes.

5 0
3 years ago
Methane gas is 304 C with 4.5 tons of mass flow per hour to an uninsulated horizontal pipe with a diameter of 25 cm. It enters a
Arada [10]

Answer:

a) h_c = 0.1599 W/m^2-K

b) H_{loss} = 5.02 W

c) T_s = 302 K

d) \dot{Q} = 25.125 W

Explanation:

Non horizontal pipe diameter, d = 25 cm = 0.25 m

Radius, r = 0.25/2 = 0.125 m

Entry temperature, T₁ = 304 + 273 = 577 K

Exit temperature, T₂ = 284 + 273 = 557 K

Ambient temperature, T_a = 25^0 C = 298 K

Pipe length, L = 10 m

Area, A = 2πrL

A = 2π * 0.125 * 10

A = 7.855 m²

Mass flow rate,

\dot{ m} = 4.5 tons/hr\\\dot{m} = \frac{4.5*1000}{3600}  = 1.25 kg/sec

Rate of heat transfer,

\dot{Q} = \dot{m} c_p ( T_1 - T_2)\\\dot{Q} = 1.25 * 1.005 * (577 - 557)\\\dot{Q} = 25.125 W

a) To calculate the convection coefficient relationship for heat transfer by convection:

\dot{Q} = h_c A (T_1 - T_2)\\25.125 = h_c * 7.855 * (577 - 557)\\h_c = 0.1599 W/m^2 - K

Note that we cannot calculate the heat loss by the pipe to the environment without first calculating the surface temperature of the pipe.

c) The surface temperature of the pipe:

Smear coefficient of the pipe, k_c = 0.8

\dot{Q} = k_c A (T_s - T_a)\\25.125 = 0.8 * 7.855 * (T_s - 298)\\T_s = 302 K

b) Heat loss from the pipe to the environment:

H_{loss} = h_c A(T_s - T_a)\\H_{loss} = 0.1599 * 7.855( 302 - 298)\\H_{loss} = 5.02 W

d) The required fan control power is 25.125 W as calculated earlier above

5 0
3 years ago
Other questions:
  • The head difference between the inlet and outlet of a 1km long pipe discharging 0.1 m^3/s of water is 0.53 m. If the diameter is
    11·1 answer
  • A motorist enters a freeway at 25 mi/h and accelerates uniformly to 65 mi/h. From the odometer in the car, the motorist knows th
    14·1 answer
  • Three possible career opportunities in embedded systems engineering
    11·1 answer
  • If changing employment what do you need to do? Email your new employer information to the Deptartment of International Graduate
    5·1 answer
  • A spring-loaded piston-cylinder contains 1 kg of carbon dioxide. This system is heated from 104 kPa and 25 °C to 1,068 kPa and 3
    6·1 answer
  • How did humans create a space suit without ever going. How did we know spaces conditions?
    5·2 answers
  • What is one major life lesson you learned from the movie; ¨Spare Parts¨
    6·2 answers
  • 30POINTS
    15·2 answers
  • John has an exhaust leak in his Acura Integra GS-R, What steps would he take to fix the leak in time for his inspection?
    8·1 answer
  • How many meters per second is 100 meters and 10 seconds
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!