Answer:
0 J
Explanation:
From the diagram below; we would notice that the Force (F) = Tension (T)
Also the angle θ adjacent to the perpendicular line = 90 °
The Workdone W = F. d
W = Fd cos θ
W = Fd cos 90°
W = Fd (0)
W = 0 J
Hence the force is perpendicular to the direction of displacement and the net work done in a circular motion in one complete revolution is = 0
a) 10 m/s
b) 25 m
Explanation:
a)
The body is moving with a constant acceleration, therefore we can solve the problem by using the following suvat equation:

where
u is the initial velocity
v is the final velocity
a is the acceleration
t is the time
For the body in this problem:
u = 0 (the body starts from rest)
is the acceleration
t = 5 s is the time
So, the final velocity is

b)
In this second part, we want to calculate the distance travelled by the body.
We can do it by using another suvat equation:

where
u is the initial velocity
v is the final velocity
a is the acceleration
s is the distance travelled
Here we have
u = 0 (the body starts from rest)
is the acceleration
v = 10 m/s is the final velocity
Solving for s,

A delta is formed at the mouth of a river as sediment is carried downstream
Answer:
a. 5A
b. 39.60%
Explanation:
The computation is shown below:
a. The current does it draw is
= v ÷ R
= 110v ÷ 22
= 5A
b. Now the efficiency of the motor is
n = mgh ÷ vlt
= (10,000 × 9.8 × 8) ÷ (5 × 3600 × 110)
= 784000 J ÷ 1,980,000
= 39.60%
hence, the above formulas are applied & the same is relevant