Answer:
A.
Explanation:
It will stay in motion unless for example, someone stops it from going.
Answer:
4.14 m
Explanation:
In the last leg of the journey the ball covers 2 m in 2ms or 0.2 s .
Let in this last leg , u be the initial velocity.
s = ut + 1/2 g t²
2 = .2 u + .5 x 9.8 x .04
u = 9.02 m /s .
Let v be the final velocity in this leg
v² = u² + 2 g s
v² = (9.02)² + 2 x 9.8 x 2
= 81.36 +39.2
v = 10.97 m / s
Now consider the whole height from where the ball dropped . Let it be h.
Initial velocity u = 0
v² = u² +2gh
(10.97 )² = 2 x 9.8 h
h = 6.14 m
Height from window
= 6.14 - 2m
= 4.14 m
The equation of GPE is mgH, where m is mass, g is gravitational acceleration, and H is the height.
If we're solving for the change in GPE, then:
∆
= mg∆H
<u>Input our given values for m and g:</u>
∆
= 0.25 * 9.80 * ∆H
<u>The book falls from 2 meters high to 0.5 meters high, so:</u>
∆
= 0.25 * 9.80 * (2.0 - 0.5)
∆
= 0.25 * 9.80 * 1.5
∆
= 3.675 (J)
<u>Adjust for significant figures:</u>
∆
= 3.7 (J)
The change in gravitational potential energy was 3.7 (J)
If you have any questions on anything I did to get to the answer, just ask!
- breezyツ
centre of square disrance to each corner found by Pythagoras' theorem.
coulombs law used to clculate field of each charge at centre
fields added vectorially for res
Answer:

Explanation:
The strength of the gravitational field at the surface of a planet is given by
(1)
where
G is the gravitational constant
M is the mass of the planet
R is the radius of the planet
For the Earth:

For the unknown planet,

Substituting into the eq.(1), we find the gravitational acceleration of planet X relative to that of the Earth:

And substituting g = 9.8 m/s^2,
