Answer:
The air is contained at a high pressure in the tube. When it escapes from a small orifice, it suddenly expands. A large amount of its heat is absorbed in the process of expansion resulting in considerable fall in its temperature. This is why the escaping air feels cold.
Answer: False
Explanation:
Relative to the concept of radiations, a black body is an object capable of absorbing any form of electromagnetic radiation irrespective of its frequency or angle of incidence when incident on such object.
However, the same cannot be said about real bodies as real bodies are those which reflect all rays incident on them completely and uniformly in all directions.
One very important characteristic of black bodies is that they are ideal emmiters.
The concept of emmisivity is brought about by the existence of real bodies .
This is due to the fact that they are only able to emit radiation at a fraction of the black body energy levels.
Please note that by convention, the emmisivity of a real body is always less thaan 1.
As such they are not able to emit as much radiation as a black body at the same temperature.
This electric force calculator will enable you to determine the repulsive or attractive force between two static charged particles. Continue reading to get a better understanding of Coulomb's law, the conditions of its validity, and the physical interpretation of the obtained result.
How to use Coulomb's law
Coulomb's law, otherwise known as Coulomb's inverse-square law, describes the electrostatic force acting between two charges. The force acts along the shortest line that joins the charges. It is repulsive if both charges have the same sign and attractive if they have opposite signs.
Coulomb's law is formulated as follows:
F = keq₁q₂/r²
where:
F is the electrostatic force between charges (in Newtons),
q₁ is the magnitude of the first charge (in Coulombs),
q₂ is the magnitude of the second charge (in Coulombs),
r is the shortest distance between the charges (in m),
ke is the Coulomb's constant. It is equal to 8.98755 × 10⁹ N·m²/C². This value is already embedded in the calculator - you don't have to remember it :)
Simply input any three values