Answer:
37.125 m
Explanation:
Using the equation of motion
s=ut+0.5at^{2} where s is distance, u is initial velocity, t is time and a is acceleration
<u>Distance during acceleration</u>
Acceleration, a=\frac {V_{final}-V_{initial}}{t} where V_{final} is final velocity and V_{initial} is initial velocity.
Substituting 0.0 m/s for initial velocity and 4.5 m/s for final velocity, acceleration will be
a=\frac {4.5 m/s-0 m/s}{4.5 s}=1 m/s^{2}
Then substituting u for 0 m/s, t for 4.5 s and a for 1 m/s^{2} into the equation of motion
s=0*4.5+ 0.5*1*4.5^{2}=0+10.125
=10.125 m
<u>Distance at a constant speed</u>
At a constant speed, there's no acceleration and since speed=distance/time then distance is speed*time
Distance=4.5 m/s*6 s=27 m
<u>Total distance</u>
Total=27+10.125=37.125 m
Hi!Schrodinger equation is written as HΨ = EΨ, where h is said to be a Hamiltonian operator.
The gravitational force <em>F</em> between two masses <em>M</em> and <em>m</em> a distance <em>r</em> apart is
<em>F</em> = <em>G M m</em> / <em>r</em> ²
Decrease the distance by a factor of 7 by replacing <em>r</em> with <em>r</em> / 7, and decrease both masses by a factor of 8 by replacing <em>M</em> and <em>m</em> with <em>M</em> / 8 and <em>m</em> / 8, respectively. Then the new force <em>F*</em> is
<em>F*</em> = <em>G </em>(<em>M</em> / 8) (<em>m</em> / 8) / (<em>r</em> / 7)²
<em>F*</em> = (1/64 × <em>G M m</em>) / (1/49 × <em>r</em> ²)
<em>F*</em> = 49/64 × <em>G M m</em> / <em>r</em> ²
In other words, the new force is scaled down by a factor of 49/64 ≈ 0.7656, so the new force has magnitude approx. 76.56 N.
Answer-A
The water cycle shows how water moves around earth.
Ex: Runoffs,precipitation, condensation, evaporation.
-Steel jelly