Answer:
Empirical formula is CH₄
Molecular formula = C₂H₈
Explanation:
Mass of carbon = 37.5 g
Mass of hydrogen = 12.5 g
Molecular weight = 32 g/mol
Molecular formula = ?
Empirical formula = ?
Solution:
Number of gram atoms of C = 37.5 g /12g/mol = 3.125
Number of gram atoms of H = 12.5 g / 1.008 g/mol= 12.4
Atomic ratio:
C : H
3.125/3.125 : 12.4 /3.125
1 : 4
C : H : = 1 : 4
Empirical formula is CH₄
Molecular formula:
Molecular formula = n (empirical formula)
n = molar mass of compound / empirical formula mass
n = 32 / 16
n = 2
Molecular formula = n (empirical formula)
Molecular formula = 2 ( CH₄)
Molecular formula = C₂H₈
Answer:
The coefficients are 2 for H₂O and 1 for Ca(OH)₂.
Explanation:
Let's consider the following reaction.
Ca(OH)₂(aq) + 2 HCl(aq) → CaCl₂(aq) + 2 H₂O(l)
According to the balanced equation, the molar ratio of H₂O to Ca(OH)₂ is 2:1. Using this conversion factor, we have the following proportion:
moles Ca(OH)₂. (2 mol H₂O ÷ 1 mol Ca(OH)₂) = moles H₂O
Answer:
because it is two substances reacting together to create a new substance
Explanation:
when iron rusts, iron molecules react with the oxygen molecules creating iron oxide aka rust.
Answer:
C) at equilibrium, the concentration of C will be much greater than the concentration of A or B.
Explanation:
A + B ⇌ C; ΔG° = -20 kJ·mol⁻¹
If ΔG is negative, the reaction is spontaneous and position of equilibrium lies to the right, so the equilibrium concentration of C is much greater than that of A or B.
A) is wrong. The molar ratio of A:B is 1:1. If their initial concentrations are 1 mol·L⁻¹, their final concentrations will be equal.
B) is wrong. The position of equilibrium lies to the right, so the concentration of C will be much greater than that of A.
D) and E) are wrong. ΔG says nothing about the rate of a reaction. It deals with the spontaneity and position of equilibrium not the speed at which equilibrium is achieved.