Displacement is simply the change in position, or the difference in the final and initial positions:

Then
(a) ∆<em>d</em> = 5 m - 0 m = 5 m
(b) ∆<em>d</em> = 1 m - (-2 m) = 1 m + 2 m = 3 m
(c) ∆<em>d</em> = 2 m - (-2 m) = 2 m + 2 m = 4 m
(d) ∆<em>d</em> = 6 m - 2 m = 4 m
The electric current<span> is the number of electrons or charges passing through a conductor per units of time. 1 ampere = 1 coulombs / 1 second. </span>Electric discharge <span>is the consequence of disrupting an isolator (for example, air), thus causing a sudden flow of </span><span>electricity</span>
C. 0.37V. A capacitor of 650x10⁻⁴F that stores 24x10⁻³C has a potential difference of 0.37V between its plates.
The key to solve this problem is using the capacitance equation C = Q/Vᵃᵇ, where C is the capacitance, Q the charge stored in the plates, and Vᵃᵇ the potential difference between the plates.
A 650x10⁻⁴F capacitor stores 24x10⁻³C, clear Vᵃᵇ for the equation:
C = Q/Vᵃᵇ -----------> Vᵃᵇ = Q/C
Solving
Vᵃᵇ = 24x10⁻³C/650x10⁻⁴F = 0.37V
We have that the maximum height reached by the basketball from its release point is

From the question we are told
- A basketball is tossed upwards with a speed of 5.0 m/s. We can ignore air resistance.
- What is the maximum height reached by the basketball from its release point?
Generally the Newtons equation for Motion is mathematically given as


Therefore
The maximum height reached by the basketball from its release point is

For more information on this visit
brainly.com/question/23366835