Answer:
The equation used to calculate the work done is: work done = force × distance. W = F × d. This is when: work done (W) is measured in joules (J)
Explanation:
F net of sled = Tension force by rope - Kinetic friction between ground.
F normal of sled = mg = (67kg)(9.81kg/m^2) = 657.27N.
Kinetic friction = 0.18 (I cannot see the value) * Normal force of sled = 0.18 * 657.27N = 118.31N
So F net of sled = 800N - 118.31N = 681.69N.
(I cannot see what the question is asking for, please check on your own!)
We can rearrange the mirror equation before plugging our values in.
1/p = 1/f - 1/q.
1/p = 1/10cm - 1/40cm
1/p = 4/40cm - 1/40cm = 3/40cm
40cm=3p <-- cross multiplication
13.33cm = p
Now that we have the value of p, we can plug it into the magnification equation.
M=-16/13.33=1.2
1.2=h'/8cm
9.6=h'
So the height of the image produced by the mirror is 9.6cm.
Answer:
As the particles move further away from their normal position (up towards the wave crest or down towards the trough), they slow down.
Explanation:
This means that some of their kinetic energy has been converted into potential energy – the energy of particles in a wave oscillates between kinetic and potential energy. Hope that this helps you and have a great day :)
I believe the answer is A