Answer:
When two objects interact, each one exerts a force on the other that can cause energy to be transferred to or from the object. For example, when energy is transferred to an Earth-object system as an object is raised, the gravitational field energy of the system increases. This energy is released as the object falls; the mechanism of this release is the gravitational force. Likewise, two magnetic and electrically charged objects interacting at a distance exert forces on each other that can transfer energy between the interacting objects.
Explanation:
Even when an object is sitting still, it has energy stored inside that can be turned into kinetic energy (motion). ... A force is a push or pull that causes an object to move, change direction, change speed, or stop. Without a force, an object that is moving will continue to move and an object at rest will remain at rest.
Impulse is the integral of a force, F.
Hope this helps.
(Please mark this brainliest, I would really appreciate it) Thanks!
<span>Velocity tells you what speed a moving object travels at and in what direction.</span>
The viscous force on an object moving through air is proportional to its velocity.
The only forces acting on an object when falling are air resistance and its weight itself. The weight acts vertically downwards whereas air resistance acts vertically upward.
Let F be the viscous force due to air molecules, B be buoyant force due to air and W be the weight of falling object. Initially, the velocity of falling object and hence the viscous force F is zero and the object is accelerated due to force
(W-B). Because of the acceleration the velocity increases and accordingly the viscous force also increases. At a certain instant, the viscous force becomes equal to W-B. The net force then becomes zero and the object falls with constant velocity. This constant velocity is called terminal velocity.
Thus at terminal velocity, air resistance and force of gravity becomes equal.
If he stops running the tea is still going to be moving so it will spill on him.