1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
drek231 [11]
2 years ago
8

Using energy considerations and assuming negligible air resistance, show that a rock thrown from a bridge 25.0 m above water wit

h an initial speed of 20.0 m/s strikes the water with a final speed of what, independent of the direction thrown.
Physics
1 answer:
Rasek [7]2 years ago
7 0

Complete question is;

Using energy considerations and assuming negligible air resistance, show that a rock thrown from a bridge 25.0 m above water with an initial speed of 20.0 m/s strikes the water with a final speed of 31.1 m/s, independent of the direction thrown

Answer:

It is proved that the final speed is truly 31.1 m/s

Explanation:

From energy - conservation principle;

E_i = Initial potential energy + Initial Kinetic Energy

Or

E_i = U_i + K_i

Similarly, for final energy

E_f = U_f + K_f

So, expressing the formulas for potential and kinetic energies, we now have;

E_i = (m × g × y_i) + (½ × m × v_i²)

Similarly,

E_f = (m × g × y_f) + (½ × m × v_f²)

We are given;

y_i = 25 m

y_f = 0 m

v_i = 20 m/s

v_f = 31.1 m/s

So, plugging in relevant values;

E_i = m((9.8 × 25) + (½ × 20²))

E_i = 485m

Similarly;

E_f = m((9.8 × 0) + (½ × v_f²)

E_f ≈ ½m•v_f²

From energy conservation principle, E_i = E_f.

Thus;

485m = ½m•v_f²

m will cancel out to give;

½v_f² = 485

v_f² = 485 × 2

v_f² = 970

v_f = √970

v_f ≈ 31.1 m/s

You might be interested in
A swimming pool, 20.0 m ? 12.5 m, is filled with water to a depth of 3.71 m. if the initial temperature of the water is 18.5°c,
Semenov [28]
1askjjjohikjgnvrfntttkmvvvvvvvfdrtgfgfgfgffdxxsd

7 0
3 years ago
A tank has the shape of an inverted circular cone with height 16m and base radius 3m. The tank is filled with water to a height
rewona [7]

Answer:

W=17085KJ

Explanation:

From the question we are told that:

Height H=16m

Radius R=3

Height of water H_w=9m

Gravity g=9.8m/s

Density of water \rho=1000kg/m^3

Generally the equation for Volume of water is mathematically given by

 dv=\pi*r^2dy

 dv=\frac{\piR^2}{H^2}(H-y)^2dy

Where

   y is a random height taken to define dv

Generally the equation for Work done to pump water is mathematically given by

 dw=(pdv)g (H-y)

Substituting dv

 dw=(p(=\frac{\piR^2}{H^2}(H-y)^2dy))g (H-y)

 dw=\frac{\rho*g*R^2}{H^2}(H-y)^3dy

Therefore

 W=\int dw

 W=\int(\frac{\rho*g*R^2}{H^2}(H-y)^3)dy

 W=\rho*g*R^2}{H^2}\int((H-y)^3)dy)

 W=\frac{1000*9.8*3.142*3^2}{9^2}[((9-y)^3)}^9_0

 W=3420.84*0.25[2401-65536]

 W=17084965.5J

 W=17085KJ

 

'

'

4 0
3 years ago
HELP ASAP <br> Describe when contact metamorphism occurs?
diamong [38]

Contact metamorphism occurs adjacent to igneous intrusions and results from high temperatures associated with the igneous intrusion. Since only a small area surrounding the intrusion is heated by the magma, metamorphism is restricted to the zone surrounding the intrusion, called a metamorphic or contact aureole

5 0
3 years ago
Read 2 more answers
A parallel-plate air capacitor is made from two plates 0.210 m square, spaced 0.815 cm apart. it is connected to a 120 v battery
GuDViN [60]

Answer:

at the beginning: 2.3\cdot 10^{-10} F

when the plates are pulled apart: 1.1\cdot 10^{-10} F

Explanation:

The capacitance of a parallel-plate capacitor is given by

C=k \epsilon_0 \frac{A}{d}

where

k is the relative permittivity of the medium (for air, k=1, so we can omit it)

\epsilon_0 = 8.85\cdot 10^{-12} F/m is the permittivity of free space

A is the area of the plates of the capacitor

d is the separation between the plates

In this problem, we have:

A=0.210 m^2 is the area of the plates

d=0.815 cm=8.15\cdot 10^{-3} m is the separation between the plates at the beginning

Substituting into the formula, we find

C=(1)(8.85\cdot 10^{-12}F/m)\frac{0.210 m^2}{8.15\cdot 10^{-3} m}=2.3\cdot 10^{-10} F

Later, the plates are pulled apart to d=1.63 cm=0.0163 m, so the capacitance becomes

C=(1)(8.85\cdot 10^{-12}F/m)\frac{0.210 m^2}{0.0163 m}=1.1\cdot 10^{-10} F

4 0
3 years ago
_____ is very corrosive and can cause rusting so metal tanks shouldn't be used
bagirrra123 [75]

Answer:

Iron

Explanation:

5 0
3 years ago
Other questions:
  • What is the energy transformation that occurs in an electric fan heater
    12·1 answer
  • Which best describes the relationship between humidity and air pressure?
    8·2 answers
  • In Hooke's law, what does k represent?
    11·2 answers
  • Which of the following is an explanation of how the natural world works, based on experimentation?
    13·2 answers
  • A convex lens can produce a real image but not a viral image<br> a. true<br> b. false
    7·1 answer
  • What are the factors affecting gravitational force?​
    14·1 answer
  • 3. The nervous system works together to communicate with different parts of the body and with the external environment. Spinal c
    14·2 answers
  • 6. The electric field caused by an electron is weakest near the electron.
    15·1 answer
  • Why would a ball in outer space move at a constant speed in the same direction?<br> HELp HURRY
    6·1 answer
  • (answer only if you know the answer or I'll report) Help me please solve it w steps​
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!