<u>Given:</u>
The initial energy of the electron Einitial = 16.32 * 10⁻¹⁹ J
The energy released i.e the change in energy ΔE = 5.4 * 10⁻¹⁹ J
<u>To determine:</u>
The final energy state Efinal of the electron
<u>Explanation:</u>
Since energy is being released, this suggests that Efinal < Einitial
i.e. ΔE = Einitial - Efinal
Efinal = Einitial - ΔE = (16.32 - 5.4)*10⁻¹⁹ = 10.92 * 10⁻¹⁹ J
Ans: A)
The electron moved down to an energy level and has an energy of 10.92 * 10⁻¹⁹ J
The mass decay rate is of the form

where
m₀ = 3000 g,the initial mass
k = the decay constant
t = time, years.
Because the half-life is 30 years, therefore

After 60 years, the mass remaining is

Answer: 750 g
Answer:
A<u> covalent bond</u> will hold them together.
Explanation:
The two bromine atoms will share electrons to build a stronger bond and have a full valence outer shell (which makes them stable).
Hope this helps!
Answer:
The role of consumers in an ecosystem is to obtain energy by feeding on other organisms and sometimes transfer energy to other consumers. Changes that affect consumers can impact other organisms within the ecosystem.
Explanation:
Hope this helped Mark BRAINLIEST!!!!
Balanced equation:
<span>CaO + 2 HCl --> CaCl2 + H2O </span>
<span>Calculate moles of each reactant: </span>
<span>60.4 g CaO / 56.08 g/mol = 1.08 mol CaO </span>
<span>69.0 g HCl / 36.46 g/mol = 1.89 mol HCl </span>
<span>Identify the limiting reactant: </span>
<span>Moles CaO needed to react with all HCl: </span>
<span>1.89 mol HCl X (1 mol CaO / 2 mol HCl) = 0.946 mol CaO </span>
<span>Because you have more CaO than that available, HCl is the limiting reactant. </span>
<span>Calculate moles and mass CaCl2: </span>
<span>1.89 mol HCl X (1 mol CaCl2 / 2mol HCl) X 111.0 g/mol = 105 g CaCl2</span>