Answer:
<h2>154.73N</h2>
Explanation:
The question is incomplete. Here is the complete question.
Using the strap at an angle of 31° above the horizontal, a Grade 12 Physics student, tired from studying, is dragging his 15 kg school bag across the floor at a constant velocity. (a) If the force of tension in the strap is 51 N, what is the normal force.
Check the diagram related to the question in the attachment below for better understanding.
The normal force is the reaction acting perpendicular to the force of tension in the strap and opposite the weight of the bag. They are the forces acting along the vertical.
The normal force N will be the sum of the force of tension acting along the vertical (Ty) and the weight of the bag (W).
Ty = 15sin31°
Ty = 7.73N
W = mass * acceleration due to gravity
W = 15.0*9.8
W = 147N
The normal force is therefore expressed as;
N = Ty + W
N = 7.73 + 147
N = 154.73N
Answer:
Explanation:
A magnet has a magnetic field around it which originates at the north pole and enters through the south pole.
In a magnet, like poles will repel each other and unlike poles will attract.
- The north pole of one magnet will repel another north pole of another magnet.
- North pole of one magnet will attract the south pole of another magnet.
- This is the law of attraction and repulsion of magnet.
Answer: g = 10.0 m/s/s
Explanation:
For a simple pendulum, provided that the angle between the lowest and highest point of his trajectory be small, the oscillation period is given by the following expression:
T = 2π √L/g , where L = pendulum length, g= accelleration of gravity.
We can also define the period, as the time needed to complete a full swing, so from the measured values, we can conclude the following :
T = 140 sec/ 101 cycles = 1.39 sec
Equating both definitions for T, we can solve for g, as follows:
g = 4 π² L / T² = 4π². 0.49 m / (1.39)² = 10.0 m/s/s
Force=mass x acceleration
f= 0.5 x40
f=20N
Answer: 1.5 m/s
Explanation:
9-3/5-1= 6/4= 3/2= 1.5
Used x2-x1/t2-t1 to get average velocity from point b to c