The Earth’s average orbital speed expressed in kilometers per hours is 107225.5 Km/hr and the mass of the sun is 2.58 x
Kg
<h3>
Relationship between Linear and angular speed</h3>
Linear speed is the product of angular speed and the maximum displacement of the particle. That is,
V = Wr
Where
Given that the earth orbits the sun at an average circular radius of about 149.60 million kilometers every 365.26 Earth days.
a) To determine the Earth’s average orbital speed, we will make use of the below formula to calculate angular speed
W = 2
/T
W = (2 x 3.143) / (365.26 x 24)
W = 6.283 / 876624
W = 7.2 x
Rad/hr
The Earth’s average orbital speed V = Wr
V = 7.2 x
x 149.6 x 
V = 107225.5 kilometers per hours.
b) Based on the information given in this question, to calculate the approximate mass of the Sun, we will use Kepler's 3rd law
M = (4
) / G
M = (4 x 9.8696 x 3.35 x
) / (6.67 x
x 7.68 x
<em>)</em>
<em>M = 1.32 x </em>
/ 51.226
M = 2.58 x
Kg
Therefore, the Earth’s average orbital speed expressed in kilometers per hours is 107225.5 Km/hr and the mass of the sun is 2.58 x
Kg
Learn more about Orbital Speed here: brainly.com/question/22247460
#SPJ1
joji sanctuary
slow dancing in the dark
happier by olivia
filipino artist like john cena
The
resulting vector is the sum of the T + U + V vectors component to component.
Therefore, if you want to find the x component of the resulting vector, the
correct formula is:
<span>Tx + Ux + Vx</span>
Find the amount of work that the spring does. This can be found using the equation 1/2kx^2. Then, you must set that equal to the amount of kinetic energy the car has. This is possible thanks to the work-energy theorem.
1/2kx^2 = 1/2mv^2
Solve to find velocity. Remember, the spring is displaced .15 m, not 15!
To find the acceleration, use F = ma. The force being applied to the car is kx, and you know the mass. You do the math.
For problem C I don't know, haven't done that yet in my class. Sorry!
The correct answer is option C.
Maxwell right hand thumb rule: if we hold a current carrying conductor in our right hand such that the thumb indicates the direction of current then the curling of fingers shows the direction of magnetic field around the conductor.
Here the current is counterclockwise so by use of Maxwell right hand thumb rule the direction of magnetic field is straight up.
Using Fleming right hand rule that States that if the fore-finger, middle finger and the thumb of left hand are stretched mutually perpendicular to each other, such that fore-finger points in the direction of magnetic field, the middle finger points in the direction of the motion of positive charge, then the thumb points to the direction of the force.
So, the current, when viewed from above, seems to move around loop in counterclockwise direction points straight up is because of Maxwell's Thumb Rule.
To know more about magnet, refer: brainly.com/question/17143116
#SPJ4