Answer:
8.8 cm
31.422 cm/s
Explanation:
m = Mass of block = 0.6 kg
k = Spring constant = 15 N/m
x = Compression of spring
v = Velocity of block
A = Amplitude
As the energy of the system is conserved we have

Amplitude of the oscillations is 8.8 cm
At x = 0.7 A
Again, as the energy of the system is conserved we have

The block's speed is 31.422 cm/s
Answer:
adapted from NOVA, a team of historians, engineers, and trade experts recreate a medieval throwing machine called a trebuchet. To launch a projectile, a trebuchet utilizes the transfer of gravitational potential energy into kinetic energy. A massive counterweight at one end of a lever falls because of gravity, causing the other end of the lever to rise and release a projectile from a sling. As part of their design process, the engineers use models to help evaluate how well their designs will work.
Explanation:
The "weight" is the name we give to the force of gravity on the object. They're the same thing.
Answer:
(a) The resistance R of the inductor is 2480.62 Ω
(b) The inductance L of the inductor is 1.67 H
Explanation:
Given;
emf of the battery, V = 16.0 V
current at 0.940 ms = 4.86 mA
after a long time, the current becomes 6.45 mA = maximum current
Part (a) The resistance R of the inductor

Part (b) the inductance L of the inductor

where;
L is the inductance
R is the resistance of the inductor
t is time

Therefore, the inductance is 1.67 H