What do we know that might help here ?
-- Temperature of a gas is actually the average kinetic energy of its molecules.
-- When something moves faster, its kinetic energy increases.
Knowing just these little factoids, we realize that as a gas gets hotter, the average speed of its molecules increases.
That's exactly what Graph #1 shows.
How about the other graphs ?
-- Graph #3 says that as the temperature goes up, the molecules' speed DEcreases. That can't be right.
-- Graph #4 says that as the temperature goes up, the molecules' speed doesn't change at all. That can't be right.
-- Graph #2 says that after the gas reaches some temperature and you heat it hotter than that, the speed of the molecules starts going DOWN. That can't be right.
--
Answer:
Because their properties like conductivity, electronic configuration and ionization lies in between the metals and nonmetals.
Explanation:
There are a total of six elements that fall in the category of semiconductors.
Namely these are boron, silicon, germanium, arsenic, antimony, and tellurium.
These elements look like metals i.e. are lustrous but do not conduct electricity so well like a metal does.
Their chemical behavior falls between that of metals and nonmetals. For example, the pure metalloids form covalent crystals like the nonmetals, but like the metals, they generally do not form mono-atomic anions.
Answer: It leads to a front. A front is.., I don't know how to explain it, so I'll add a picture. Fronts are made out of clouds and usually bring rain. So the answer is C: The formation of clouds and rain.
Explanation:
Answer:
reduced performance due to stereotype threat
Explanation: