This year is 60 years since I learned this stuff, and one of the things I always remembered is the formula for the distance a dropped object falls:
D = 1/2 A T²
Distance = (1/2) (acceleration) (time²)
The reason I never forgot it is because it's SO useful SO often. You really should memorize it. And don't bury it too deep in your toolbox ... you'll be needing it again very soon. (In fact, if you had learned it the first time you saw it, you could have solved this problem on your own today.)
The problem doesn't tell us what planet this is happening on, so let's make it easy and just assume it's on Earth. Then the 'acceleration' is Earth gravity, and that's 9.8 m/s² .
In 5 seconds:
D = 1/2 A T²
D = (1/2) (9.8 m/s²) (5 sec)²
D = (4.9 m/s²) (25 sec²)
D = 122.5 meters
In 6 seconds:
D = 1/2 A T²
D = (1/2) (9.8 m/s²) (6 sec)²
D = (4.9 m/s²) (36 sec²)
D = 176 meters
Answer:
n = 756.25 giga electrons
Explanation:
It is given that,
If the charge on the negative plate of the capacitor, 
Let n is the number of excess electrons are on that plate. Using the quantization of charges, the total charge on the negative plate is given by :

e is the charge on electron

or
n = 756.25 giga electrons
So, there are 756.25 giga electrons are on the plate. Hence, this is the required solution.
Object height 10cm is placed in front of plane mirror. The height of the image will also be 10cm as the height of image is same as height of object in the case of plane mirror
Answer:
a)
b)
c) 0 J/K
d)S= 61.53 J/K
Explanation:
Given that
T₁ = 745 K
T₂ = 101 K
Q= 7190 J
a)
The entropy change of reservoir 745 K

Negative sign because heat is leaving.

b)
The entropy change of reservoir 101 K


c)
The entropy change of the rod will be zero.
d)
The entropy change of the system
S= S₁ + S₂
S = 71.18 - 9.65 J/K
S= 61.53 J/K
The answer to this question is Helium