Explanation:
group 1 elements reacts with oxygen
Missing question:
Suppose Gabor, a scuba diver, is at a depth of 15 m. Assume that:
1. The air pressure in his air tract is the same as the net water pressure at this depth. This prevents water from coming in through his nose.
2. The temperature of the air is constant (body temperature).
3. The air acts as an ideal gas.
4. Salt water has an average density of around 1.03 g/cm^3, which translates to an increase in pressure of 1.00 atm for every 10.0 m of depth below the surface. Therefore, for example, at 10.0 m, the net pressure is 2.00 atm.
T = 37°C = 310 K.
p₁ = 2,5 atm = 253,313 kPa.
p₂ = 1 atm = 101,325 kPa.
Ideal gas law: p·V = n·R·T.
n₁ = 253,313 kPa · 6 L ÷ 8,31 J/mol·K · 310 K.
n₁ = 0,589 mol.
n₂ = 101,325 kPa · 6 L ÷ 8,31 J/mol·K · 310 K.
n₂ = 0,2356 mol.
Δn = 0,589 mol - 0,2356 mol = 0,3534 mol.
Answer:
It causes light to slow down significantly
Explanation:
The index of refraction of a substance describes the speed of light in that substance, as a ratio of the speed of light in vacuum to its speed in that substance.
just search it up and there is your answer
The rate of reaction that can be measured in the dark by determining the amount of oxygen gas consumed in a period of time is the rate of respiration.
Why?
Plants can undergo two types of reactions involving oxygen:
- <u>Photosynthesis: </u>In this type of reaction, plants use energy from light to synthesize glucose. The chemical reaction for photosynthesis is: 6H₂O + 6CO₂ → C₆H₁₂O₆ + 6O₂, and this reaction produces oxygen gas in the presence of light, that means that to measure the rate of photsynthesis, you'll need to measure the amount of oxgen gas <u>produced</u> in a period of time.
- <u>Respiration:</u> In this type of reaction, plants convert the energy stored in the chemical bonds of molecules such as glucose to obtain energy. The chemical reaction for respiration is: C₆H₁₂O + 6O₂ → 6H₂O + 6CO₂, since this reaction consumes oxygen gas in the dark, that means that to measure the rate of respiration, you'll need to measure the amount of oxygen gas <u>consumed</u> in a period of time.
Have a nice day!