Assuming an ebullioscopic constant of 0.512 °C/m for the water, If you add 30.0g of salt to 3.75kg of water, the boiling-point elevation will be 0.140 °C and the boiling-point of the solution will be 100.14 °C.
<h3>What is the boiling-point elevation?</h3>
Boiling-point elevation describes the phenomenon that the boiling point of a liquid will be higher when another compound is added, meaning that a solution has a higher boiling point than a pure solvent.
- Step 1: Calculate the molality of the solution.
We will use the definition of molality.
b = mass solute / molar mass solute × kg solvent
b = 30.0 g / (58.44 g/mol) × 3.75 kg = 0.137 m
- Step 2: Calculate the boiling-point elevation.
We will use the following expression.
ΔT = Kb × m × i
ΔT = 0.512 °C/m × 0.137 m × 2 = 0.140 °C
where
- ΔT is the boiling-point elevation
- Kb is the ebullioscopic constant.
- b is the molality.
- i is the Van't Hoff factor (i = 2 for NaCl).
The normal boiling-point for water is 100 °C. The boiling-point of the solution will be:
100 °C + 0.140 °C = 100.14 °C
Assuming an ebullioscopic constant of 0.512 °C/m for the water, If you add 30.0g of salt to 3.75kg of water, the boiling-point elevation will be 0.140 °C and the boiling-point of the solution will be 100.14 °C.
Learn more about boiling-point elevation here: brainly.com/question/4206205
Answer : This reaction is an exothermic reaction.
Explanation :
Endothermic reaction : It is defined as the chemical reaction in which the energy is absorbed from the surrounding.
In the endothermic reaction, the energy of reactant are less than the energy of product.
Exothermic reaction : It is defined as the chemical reaction in which the energy is released into the surrounding.
In the exothermic reaction, the energy of reactant are more than the energy of product.
Enthalpy of reaction : It is the difference between the energy of product and the reactant. It is represented as
.
The balanced chemical reaction will be:

From the reaction we conclude that the heat energy is released during the reaction that means this reaction is an exothermic reaction.
Hence, the reaction is an exothermic reaction.
The amount of space would be consider matter
Because the resulting hybridized orbitals are more stable
Answer:
1.26*10²³ particles are present in 12.47 grams of NaCl
Explanation:
Avogadro's Number or Avogadro's Constant is called the number of particles that make up a substance (usually atoms or molecules) and that can be found in the amount of one mole of said substance. Its value is 6.023 * 10²³ particles per mole. The Avogadro number applies to any substance.
So, first of all you must know the amount of moles that represent 12.47 grams of NaCl. For that it is necessary to know the molar mass.
You know:
- Na: 23 g/mole
- Cl: 35.45 g/mole
So the molar mass of NaCl is: 23 g/mole + 35.45 g/mole= 58.45 g/mole
Now you apply a rule of three as follows: if 58.45 grams are present in 1 mole of NaCl, 12.47 grams in how many moles will they be?

moles= 0.21
You apply a rule of three again, knowing Avogadro's number: if in 1 mole of NaCl there are 6,023 * 10²³ particles, in 0.21 moles how many particles are there?

number of particles= 1.26*10²³
<u><em>1.26*10²³ particles are present in 12.47 grams of NaCl</em></u>
<u><em></em></u>