Because the there’s not enough inertia to keep the bouncy ball going at the same rate
Answer:
0.393 mol/L.
Explanation:
The following data were obtained from the question:
Number of mole of NaOH = 0.550 mol
Volume of solution = 1.40 L
Molarity of NaOH =.?
Molarity of a solution is simply defined as the mole of solute per unit litre of the solution. Mathematically, it is expressed as:
Molarity = mole /Volume
With the above formula, we can obtain the molarity of the NaOH solution as follow:
Number of mole of NaOH = 0.550 mol
Volume of solution = 1.40 L
Molarity of NaOH =.?
Molarity = mole / Volume
Molarity of NaOH = 0.55 / 1.4
Molarity of NaOH = 0.393 mol/L
Thus, the molarity of the NaOH solution is 0.393 mol/L.
1. Write out the formula
Pb(NO3)2 (aq) + 2HCl (aq) ----> PbCl2 + 2HNO3
2. Use solubility guidelines (gotta memorize 'em) for the products to see if a solid forms
Nitrates are always soluble so 2HNO3 (aq)
Chlorides (Cl) are always soluble except for when you mix them with copper, lead, mercury, or silver.
Since you mixed it with lead (Pb) it is solid and forms a precipitate. PbCl2 (s)
In the case of an emergency where you might not have enough time to read several lines of writing, not to mention trying to find the hazard warnings when the whole bottle is probably covered in writing, it is much easier to locate and read universal hazard symbols.
Answer:
we can do it again and again and again and again and again and again