The astronomical unit or also know as AU. Scientists use this because it’s convenient and easier to understand! Hope this helps ;)
<u>Answer:</u> C) be hypertonic to Tank B.
<u>Explanation: </u>
<u>
The ability of an extracellular solution to move water in or out of a cell by osmosis</u> is known as its tonicity. Additionally, the tonicity of a solution is related to its osmolarity, which is the <u>total concentration of all the solutes in the solution.
</u>
Three terms (hypothonic, isotonic and hypertonic) are used <u>to compare the osmolarity of a solution with respect to the osmolarity of the liquid that is found after the membrane</u>. When we use these terms, we only take into account solutes that can not cross the membrane, which in this case are minerals.
- If the liquid in tank A has a lower osmolarity (<u>lower concentration of solute</u>) than the liquid in tank B, the liquid in tank A would be hypotonic with respect to the latter.
- If the liquid in tank A has a greater osmolarity (<u>higher concentration of solute</u>) than the liquid in tank B, the liquid in tank A would be hypertonic with respect to the latter.
- If the liquid in tank A has the same osmolarity (<u>equal concentration of solute</u>) as the liquid in tank B, the liquid in tank A would be isotonic with respect to the latter.
In the case of the problem, option A is impossible because the minerals can not cross the membrane, since it is permeable to water only. There is no way that the concentration of minerals decreases in tank A, so <u>the solution in this tank can not be hypotonic with respect to the one in Tank B. </u>
Equally, both solutions can not be isotonic and neither we can say that the solution in tank A has more minerals that the one in tank B because the liquid present in tank B is purified water that should not have minerals. Therefore, <u>options B and D are also not correct.</u>
Finally, the correct option is C, since in the purification procedure the water is extracted from the solution in tank A to obtain a greater quantity of purified water in tank B. In this way, the solution in Tank A would be hypertonic to Tank B.
During selection of indicator. We choose an indicator which have pH range equivalent to the pH change of reaction to give better result and better observation.
So there are some different indicator are used in table 2 as compared to the table 1.
- Alizarin and phenolphthalein are basic indicator and their pH range is more than 8 so they are used in table 2
<span />
B directly; inversely
Pressure and volume have an inverse relationship (when one increases the other increases) while volume and temperature are direct (if one increases so does the other)
Note: these relationships are only true if other factors are constant such as the temperature, and amount (in moles).
Answer: Option (D) is the correct answer.
Explanation:
Atomic number of lithium is 3 and electrons in its shell are distributed as 2, 1. Atomic number of chlorine is 17 and electrons in its shell are distributed as 2, 8, 7.
Thus, we can see that lithium has 1 extra electron and chlorine has deficiency of 1 electron. Therefore, in order to gain stability lithium will transfer its 1 extra electron to chlorine atom.
Thus, we can conclude that electrons are transferred from the lithium atom to the chlorine atom.